Presently developed two-phase turbulence models under-predict the gas turbulent fluctuation, because their turbulence modification models cannot fully reflect the effect of particles. In this paper, a two-time-scale d...Presently developed two-phase turbulence models under-predict the gas turbulent fluctuation, because their turbulence modification models cannot fully reflect the effect of particles. In this paper, a two-time-scale dis- sipation model of turbulence modification, developed for the two-phase velocity correlation and for the dissipation rate of gas turbulent kinetic energy, is proposed and used to simulate sudden-expansion and swirling gas-particle flows. The proposed two-time scale model gives better results than the single-time scale model. Besides, a gas tur- bulence augmentation model accounting for the finite-size particle wake effect in the gas Reynolds stress equation is proposed. The proposed turbulence modification models are used to simulate two-phase pipe flows. It can prop- erly predict both turbulence reduction and turbulence enhancement for a certain size of particles observed in ex- periments.展开更多
The use of a lower sampling rate for designing a discrete-time state feedback-based controller fails to capture information of fast states in a two-time-scale system, while the use of a higher sampling rate increases ...The use of a lower sampling rate for designing a discrete-time state feedback-based controller fails to capture information of fast states in a two-time-scale system, while the use of a higher sampling rate increases the amount of computation considerably. Thus,the use of single-rate sampling for systems with slow and fast states has evident limitations. In this paper, multirate state feedback(MRSF) control for a linear time-invariant two-time-scale system is proposed. Here, multirate sampling refers to the sampling of slow and fast states at different sampling rates. Firstly, a block-triangular form of the original continuous two-time-scale system is constructed. Then, it is discretized with a smaller sampling period and feedback control is designed for the fast subsystem. Later, the system is block-diagonalized and equivalently represented into a system with a higher sampling period. Subsequently, feedback control is designed for the slow subsystem and overall MRSF control is derived. It is proved that the derived MRSF control stabilizes the full-order system. Being the transformed states of the original system, slow and fast states need to be estimated for the MRSF control realization.Hence, a sequential two-stage observer is formulated to estimate these states. Finally, the applicability of the design method is demonstrated with a numerical example and simulation results are compared with the single-rate sampling method. It is found that the proposed MRSF control and observer designs reduce computations without compromising closed-loop performance.展开更多
This work develops asymptotic expansions for solutions of systems of backward equations of time- inhomogeneous Maxkov chains in continuous time. Owing to the rapid progress in technology and the increasing complexity ...This work develops asymptotic expansions for solutions of systems of backward equations of time- inhomogeneous Maxkov chains in continuous time. Owing to the rapid progress in technology and the increasing complexity in modeling, the underlying Maxkov chains often have large state spaces, which make the computa- tional tasks ihfeasible. To reduce the complexity, two-time-scale formulations are used. By introducing a small parameter ε〉 0 and using suitable decomposition and aggregation procedures, it is formulated as a singular perturbation problem. Both Markov chains having recurrent states only and Maxkov chains including also tran- sient states are treated. Under certain weak irreducibility and smoothness conditions of the generators, the desired asymptotic expansions axe constructed. Then error bounds are obtained.展开更多
本文针对含有自激励,参数激励和外激励等三种激励联合作用下van der Pol-Mathieu方程的周期响应和准周期运动进行分析,发现其准周期运动的频谱中含有均匀边频带这一新的特性.首先,采用传统的增量谐波平衡法(IHB法)分析了van der Pol-Mat...本文针对含有自激励,参数激励和外激励等三种激励联合作用下van der Pol-Mathieu方程的周期响应和准周期运动进行分析,发现其准周期运动的频谱中含有均匀边频带这一新的特性.首先,采用传统的增量谐波平衡法(IHB法)分析了van der Pol-Mathieu方程的周期响应,得到了其非线性频率响应曲线;再利用Floquet理论对周期解进行稳定性分析,得到了两种类型的分岔及它们的位置.然后,基于van der Pol-Mathieu方程准周期运动的频谱中边频带相邻频率之间是等距的且含有两个不可约的基频的特性(其中一个基频是已知的,另一个基频事先是未知的),推导了相应的两时间尺度IHB法,精确计算出van der Pol-Mathieu方程的准周期运动的另一个未知基频和所有的频率成份及其对应的幅值,尤其在临界点附近处的准周期运动响应.得到的准周期运动结果和利用四阶龙格-库塔(RK)数值法得到的结果高度吻合.最后,研究发现了含外激励van der Pol-Mathieu方程在不同激励频率时的一些丰富而有趣的非线性动力学现象.展开更多
基金State Key Development Program for Basic Research of China (No.2006CB200305), the National Natural Sci-ence Foundation of China (No.50376004), and Ph.D. Program Foundation of Ministry of Education of China (No.20030007028).
文摘Presently developed two-phase turbulence models under-predict the gas turbulent fluctuation, because their turbulence modification models cannot fully reflect the effect of particles. In this paper, a two-time-scale dis- sipation model of turbulence modification, developed for the two-phase velocity correlation and for the dissipation rate of gas turbulent kinetic energy, is proposed and used to simulate sudden-expansion and swirling gas-particle flows. The proposed two-time scale model gives better results than the single-time scale model. Besides, a gas tur- bulence augmentation model accounting for the finite-size particle wake effect in the gas Reynolds stress equation is proposed. The proposed turbulence modification models are used to simulate two-phase pipe flows. It can prop- erly predict both turbulence reduction and turbulence enhancement for a certain size of particles observed in ex- periments.
基金supported by National Natural Science Foundation of China (No. 61750110524)National Key R&D Program of China (No. 2017YFE0128500)。
文摘The use of a lower sampling rate for designing a discrete-time state feedback-based controller fails to capture information of fast states in a two-time-scale system, while the use of a higher sampling rate increases the amount of computation considerably. Thus,the use of single-rate sampling for systems with slow and fast states has evident limitations. In this paper, multirate state feedback(MRSF) control for a linear time-invariant two-time-scale system is proposed. Here, multirate sampling refers to the sampling of slow and fast states at different sampling rates. Firstly, a block-triangular form of the original continuous two-time-scale system is constructed. Then, it is discretized with a smaller sampling period and feedback control is designed for the fast subsystem. Later, the system is block-diagonalized and equivalently represented into a system with a higher sampling period. Subsequently, feedback control is designed for the slow subsystem and overall MRSF control is derived. It is proved that the derived MRSF control stabilizes the full-order system. Being the transformed states of the original system, slow and fast states need to be estimated for the MRSF control realization.Hence, a sequential two-stage observer is formulated to estimate these states. Finally, the applicability of the design method is demonstrated with a numerical example and simulation results are compared with the single-rate sampling method. It is found that the proposed MRSF control and observer designs reduce computations without compromising closed-loop performance.
基金supported in part by the National Science Foundation under DMS-0603287inpart by the National Security Agency under grant MSPF-068-029+1 种基金in part by the National Natural ScienceFoundation of China(No.70871055)supported in part by Wayne State University under Graduate ResearchAssistantship
文摘This work develops asymptotic expansions for solutions of systems of backward equations of time- inhomogeneous Maxkov chains in continuous time. Owing to the rapid progress in technology and the increasing complexity in modeling, the underlying Maxkov chains often have large state spaces, which make the computa- tional tasks ihfeasible. To reduce the complexity, two-time-scale formulations are used. By introducing a small parameter ε〉 0 and using suitable decomposition and aggregation procedures, it is formulated as a singular perturbation problem. Both Markov chains having recurrent states only and Maxkov chains including also tran- sient states are treated. Under certain weak irreducibility and smoothness conditions of the generators, the desired asymptotic expansions axe constructed. Then error bounds are obtained.
文摘本文针对含有自激励,参数激励和外激励等三种激励联合作用下van der Pol-Mathieu方程的周期响应和准周期运动进行分析,发现其准周期运动的频谱中含有均匀边频带这一新的特性.首先,采用传统的增量谐波平衡法(IHB法)分析了van der Pol-Mathieu方程的周期响应,得到了其非线性频率响应曲线;再利用Floquet理论对周期解进行稳定性分析,得到了两种类型的分岔及它们的位置.然后,基于van der Pol-Mathieu方程准周期运动的频谱中边频带相邻频率之间是等距的且含有两个不可约的基频的特性(其中一个基频是已知的,另一个基频事先是未知的),推导了相应的两时间尺度IHB法,精确计算出van der Pol-Mathieu方程的准周期运动的另一个未知基频和所有的频率成份及其对应的幅值,尤其在临界点附近处的准周期运动响应.得到的准周期运动结果和利用四阶龙格-库塔(RK)数值法得到的结果高度吻合.最后,研究发现了含外激励van der Pol-Mathieu方程在不同激励频率时的一些丰富而有趣的非线性动力学现象.