Utilizing theories of minerageny and prospecting mineralogy, the authors studied the attitude, morphotype and chemical composition of metallic minerals of pyrite, gold, chalcopyrite, galena and sphalerite, non-metalli...Utilizing theories of minerageny and prospecting mineralogy, the authors studied the attitude, morphotype and chemical composition of metallic minerals of pyrite, gold, chalcopyrite, galena and sphalerite, non-metallic minerals of quartz, carbonate, dolomite and rutile in the Puziwan gold deposit. The study shows the following results. (1) The mineral assemblage is complex and the species of sulfide are abundant with occurrences of sulfosalt minerals. (2) The composition in the minerals is complex and there rich micro elements, including As, Sb, Bi, Se, Te, Au, Ag, Cu, Pb, Zn, and Cr, Ni, V. The typomorphic characteristics of the association of the elements and their specific value suggest that gold mineralization is associated with shallow magmatic hydrothermal activity, the oreforming fluid is the mixture of abundant rising alkali magmatic water originating from the mantle or the lower crust and the descending acid atmospheric water. (3) Ankerite, Fe-rich sphalerite, granular Ti-rich rutile are widely distributed, which indicate great denudation depths, high mineralization temperature. The deposit is found in the middle and shallow positions of the porphyry series. The deep layers are not favorable for gold mineralization. (4) Copper minerals are rich in the ores and sulfides have high content of copper, suggesting possible porphyry-type Cu (Au) mineralization in deep positions and the surrounding areas.展开更多
文摘Utilizing theories of minerageny and prospecting mineralogy, the authors studied the attitude, morphotype and chemical composition of metallic minerals of pyrite, gold, chalcopyrite, galena and sphalerite, non-metallic minerals of quartz, carbonate, dolomite and rutile in the Puziwan gold deposit. The study shows the following results. (1) The mineral assemblage is complex and the species of sulfide are abundant with occurrences of sulfosalt minerals. (2) The composition in the minerals is complex and there rich micro elements, including As, Sb, Bi, Se, Te, Au, Ag, Cu, Pb, Zn, and Cr, Ni, V. The typomorphic characteristics of the association of the elements and their specific value suggest that gold mineralization is associated with shallow magmatic hydrothermal activity, the oreforming fluid is the mixture of abundant rising alkali magmatic water originating from the mantle or the lower crust and the descending acid atmospheric water. (3) Ankerite, Fe-rich sphalerite, granular Ti-rich rutile are widely distributed, which indicate great denudation depths, high mineralization temperature. The deposit is found in the middle and shallow positions of the porphyry series. The deep layers are not favorable for gold mineralization. (4) Copper minerals are rich in the ores and sulfides have high content of copper, suggesting possible porphyry-type Cu (Au) mineralization in deep positions and the surrounding areas.