Objective To approach the associated mechanism by which α-synuclein (α-Syn) might regulate the metabolism of dopamine. Methods A DNA fragment, located at --495 to +25 of the human tyrosine hydroxylase (TH) gene...Objective To approach the associated mechanism by which α-synuclein (α-Syn) might regulate the metabolism of dopamine. Methods A DNA fragment, located at --495 to +25 of the human tyrosine hydroxylase (TH) gene, was amplified by PCR and inserted into the pGL3-Basic luciferase reporter vector. The recombinant plasmid pGL3-THprom was transfected into a dopammergic cell line MES23.5 or a α-Syn over-expressed MES23.5 (named MES23.5/hα-Syn^+). The promoter activity was detected by the Dual Luciferase Assay System. Results The luciferase activities in the MES23.5 cells transfected with pGl.,3-Basic, pGL3-THprom, and pGL3-Control vectors were 5.60±0.67, 26.80±4.11, and 32.90±4.75, respectively. On the other hand, the luciferase activity of pGL3-THprom in the MES23.5 (26.80±4.11) was significantly higher than that in the MES23.5/hα-Syn^+(14.40±0.61) (P〈0.01). Conclusion These results indicate that the -495 to +25 region in the TH gene possesses promoter activity for controlling the gene expression, and that α-Syn may negatively regulate the metabolism of dopamine by affecting the function of TH promoter as a trans-acting factor.展开更多
Tyrosine hydroxylase is a key enzyme in dopamine biosynthesis. Change in tyrosine hydroxylase expression in the nigrostriatal system is closely related to the occurrence and development of Parkinson's disease. Verbas...Tyrosine hydroxylase is a key enzyme in dopamine biosynthesis. Change in tyrosine hydroxylase expression in the nigrostriatal system is closely related to the occurrence and development of Parkinson's disease. Verbascoside, an extract from Radix Rehmanniae Praeparata has been shown to be clinically effective in treating Parkinson's disease. However, the underlying mechanisms remain unclear. It is hypothesized that the effects of verbascoside on Parkinson's disease are related to tyrosine hydroxylase expression change in the nigrostriatal system. Rat models of Parkinson's disease were established and verbascoside(60 mg/kg) was administered intraperitoneally once a day. After 6 weeks of verbascoside treatment, rat rotational behavior was alleviated; tyrosine hydroxylase m RNA and protein expression and the number of tyrosine hydroxylase-immunoreactive neurons in the rat right substantia nigra were significantly higher than the Parkinson's model group. These findings suggest that the mechanism by which verbascoside treats Parkinson's disease is related to the regeneration of tyrosine hydroxylase-immunoreactive neurons in the substantia nigra.展开更多
The present study examined changes in retinal tyrosine hydroxylase (TH) expression in rats having undergone optic nerve transection and housed under a normal day/night cycle or in the dark. The aim was to investigat...The present study examined changes in retinal tyrosine hydroxylase (TH) expression in rats having undergone optic nerve transection and housed under a normal day/night cycle or in the dark. The aim was to investigate the effects of amacrine cells on axonal regeneration in retinal ganglion cells and on the synapses that transmit visual signals. The results revealed that retinal TH expression gradually decreased following optic nerve transection in rats housed under a normal day/night cycle reaching a minimum at 5 days. In contrast, retinal TH expression decreased to a minimum at 1 day following optic nerve transection in dark reared rats, gradually increasing afterward and reaching a normal level at 5 7 days. The number of TH-positive synaptic particles correlated with the TH levels indicating that dark rearing can help maintain TH expression during the synaptic degeneration stage (5 7 days after optic nerve injury) in retinal amacrine cells.展开更多
This study showed that abnormal behavioral changes were greatly improved in rats displaying Parkinson's disease-like symptoms after intragastric administration of Xifeng Dingchan decoction at 15, 7.5, 3.75 g/kg per d...This study showed that abnormal behavioral changes were greatly improved in rats displaying Parkinson's disease-like symptoms after intragastric administration of Xifeng Dingchan decoction at 15, 7.5, 3.75 g/kg per day. In addition, tyrosine hydroxylase mRNA expression in the substantia nigra of the midbrain was up-regulated, and tyrosine hydroxylase content in the midbrain ventral tegmentum and substantia nigra pars compacta was also increased. The effect of administration of Xifeng Dingchan decoction at 7.5 g/kg per day was similar to that of Madopar at 67.5 mg/kg per day. These results indicate that the therapeutic effect of Xifeng Dingchan decoction on Parkinson's disease is associated with the up-regulated protein and mRNA expression of tyrosine hydroxylase in the midbrain.展开更多
Objective To study the effects of deltamethrin on tyrosine hydroxylase in nigrostriatum of male rats. Methods Sprague-Dawley rats were daily treated with deltamethrin at 6.25 or 12.5 mg/kg body weight by gavage for 10...Objective To study the effects of deltamethrin on tyrosine hydroxylase in nigrostriatum of male rats. Methods Sprague-Dawley rats were daily treated with deltamethrin at 6.25 or 12.5 mg/kg body weight by gavage for 10 days. Then HPLC-fluorescence detection was used to analyze the contents of dopamine (DA), 3,4-dihydmxyphenylacetic acid (DOPAC) and homoranillic acid (HVA) in substantial nigra and striatum. The activities of tyrosine hydroxylase (TH) were also detected by HPLC-fluorescence detection. TH mRNA or TH protein levels were measured by RT-PCR and immunohistochemistry method. Results The content of DA in stfiatum was significantly decreased by the treatments, suggesting an inhibition of DA synthesis by deltamethrin. The contents of DA metabolites DOPAC and HVA increased, indicating increased dopamine turnover. Furthermore, deltamethrin significantly decreased the activity, as well as the mRNA and protein levels of TH. Conclusions These findings reveal a novel aspect of deltamethfin neurotoxicity and suggest tyrosine hydroxylase as a molecular target of deltamethin on dopamine metabolism in the nigrostriatal pathway.展开更多
BACKGROUND: Electromagnetic radiation can influence dopamine (DA) synthesis in brain tissues or ceils, but electromagnetic frequencies, intensities, and radiation time can produce different effects. In addition, th...BACKGROUND: Electromagnetic radiation can influence dopamine (DA) synthesis in brain tissues or ceils, but electromagnetic frequencies, intensities, and radiation time can produce different effects. In addition, the signal pathway by which electromagnetic radiation influences DA synthesis remains controversial. OBJECTIVE: To determine tyrosine hydroxylase (TH) expression in PC12 cells and DA levels in cell culture media after different periods of low-frequency pulsed electric field (LF-PEF) stimulation, and to determine how LF-PEF signaling stimulates TH synthesis using inhibitors. DESIGN, TIME AND SETTING: A parallel, controlled, cell experiment was performed at the Laboratory of Cell Biology, School of Life Science, East China Normal University, between January and October 2006. MATERIALS: PC12 cells were purchased from the Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, China. Nerve growth factor was purchased from PeproTech, USA. The protein kinase A inhibitor, H-89, and mitogen-activated protein kinase kinase inhibitor, U0126, were purchased from Sigma, USA. METHODS: (1) Following routine culture in Dulbecco's modified eagle medium, primary PC12 cells were stimulated under LF-PEF (pulse frequency 50.Hz, pulse width 20 μs, peak field strength 1 V/m) for 5, 10, 15, 20, and 30 minutes. (2) Inhibitors (H-89 or U0126, 1 μmol/L) were added 30 minutes before LF-PEF stimulation for 10 minutes. MAIN OUTCOME MEASURES: (1) TH expression was determined by Western blot in PC12 cells at 0.5, 1,2, 3, and 4 days after LF-PEF stimulation. Similarly, DA was measured by high-performance liquid chromatography in media at 2, 3, 4, or 5 days after LF-PEE (2) TH expression was detected 1 day after H-89 or U0126 treatment and LF-PEE RESULTS: (1) Short-term LF-PEF stimulation (5 and 10 minutes) increased TH expression and media DA levels after short-term culture (2 days) (P 〈 0.01), but both parameters decreased with longer culture (3 4 days) (P 〈 0.01). Long-term LF-PEF stimulation (15, 20, or 30 minutes) decreased TH and DA synthesis, followed by a rapid increase (P 〈 0.01). (2) H89 could completely inhibit TH expression in PC12 cells stimulated by LF-PEF for 10 minutes, while the inhibition rate of U0126 was 53.2%. CONCLUSION: Short-term LF-PEF first promotes then inhibits, while long-term LF-PEF first inhibits then promotes, TH and DA synthesis. LF-PEF stimulation regulates TH expression primarily by activating protein kinase A to regulate DA synthesis.展开更多
The use of gene therapy has been intensively studied as a potential method to treat Parkinson’s disease (PD) and other degenerative brain diseases. However, the effects of experimental measures and approaches on the ...The use of gene therapy has been intensively studied as a potential method to treat Parkinson’s disease (PD) and other degenerative brain diseases. However, the effects of experimental measures and approaches on the outcome of gene delivery or on the physiological state of target tissues have not been analyzed as much and systematically. Therefore, we have infused adenovirus vectors expressing either a therapeutic tyrosine hydroxylase (TH) gene or a lacZ reporter gene into striatum in a rat model of PD. The experimental procedures were tested using the Ad lacZ vector in order to optimize concentrations, volumes, infusion speeds and transfection times. The expression of Ad lacZ vector was lower and declined earlier in the lesioned than unlesioned striatum suggesting that the lesion affects on the transfection efficiency and outcome of gene transfection. The effect of three different approaches of Ad TH vector transfection was compared: 1) the delivery of Ad TH gene vector alone into one single site of striatum, 2) the delivery of Ad TH gene vector alone into multiple sites of striatum, and 3) the delivery of Ad TH gene vector into one site of striatum followed by a continuous infusion of tetrahydrobiopterin (BH4) cofactor with a mini pump. There was a small and transient unsignificant decrease in the turning behavior when the Ad TH vector was delivered into one site of the striatum. Simultaneous infusion into several sites or together with BH4 cofactor did not improve more the effect of gene delivery. Thus, although the effects were unsignificant, the Ad TH transfection seemed to decrease the turning behavior in the rat model of PD and the optimal effect was seen at some specific doses and time points. Furthermore, the outcome of gene therapy could depend in addition to the amount and efficacy of gene vectors also on the physiological state and experimental strategies.展开更多
In recent years,neurodegenerative diseases,such as Parkinson’s or Alzheimer’s diseases,are rapidly rising in prevalence.The main hallmark of Parkinson’s disease is the falling levels of neurotransmitter dopamine in...In recent years,neurodegenerative diseases,such as Parkinson’s or Alzheimer’s diseases,are rapidly rising in prevalence.The main hallmark of Parkinson’s disease is the falling levels of neurotransmitter dopamine in the mid-brain with dopaminergic neurons losing.Typical therapeutic solutions,including drugs,deep brain stimulation,and cell transplantation,can only alleviate the symptoms of Parkinson’s disease.It is a tremendous challenge to reverse the function degeneration of the crucial dopaminergic neurons.Herein,we develop a core-satellite-like nanoassembly(PDA-AFn(by integrating polydopamine nanoparticles and apoferritin))to raise the expression of tyrosine hydroxylase(TH),a rate-limiting enzyme in the formation of the dopamine.Both components in the nanoassembly could cooperate with each other,not only elaborately regulate the iron homeostasis and redox microenvironment,but also utilize excessive reactive oxygen species(ROS)and iron ions in the damaged neurons to supply extra dopamine and enhance TH activity,and consequently restore the function of the degenerated neurons.Remarkably,the nanoassembly-treatment relieves the dyskinesia and dramatical increases the tyrosine hydroxylase and dopamine level in the midbrain of Parkinson’s disease model mice.It is an explicit yet inspiring advance in treatment of the neurodegeneration.展开更多
Objective:To explore the effect of Bushen Huoxue Decoction(补肾活血饮,BHD) on the orphan receptor(Nurr1) and tyrosine hydroxylase(TH) in the brain of rats with Parkinson's disease(PD).Methods:One hundred an...Objective:To explore the effect of Bushen Huoxue Decoction(补肾活血饮,BHD) on the orphan receptor(Nurr1) and tyrosine hydroxylase(TH) in the brain of rats with Parkinson's disease(PD).Methods:One hundred and twenty SD rats were divided into 100 in the model group and 20 in the normal control group,fifty-eight SD rats from the model group,established into PD model successfully by injuring their substantia nigra (SSN) with 6-hydroxydopamine,were divided equally into the model group and the test group,and they were treated with saline and BHD,respectively,for eight successive weeks.The change in the rats' behavior before and after treatment was observed by counting the cycles of rotation induced by apomorphine injection; the pathology of neurons,level of Nurr1 mRNA expression,and amount of TH positive cells in SSN were observed after treatment.Results:The rats' behavior was improved in the tested group significantly,the rotation cycle after treatment being 84.0±20.0 cycles/40 min,which was significantly lower than that in the model group(377.0±62.3 cycles/40 min,P〈0.01).Besides,the Nurr1 mRNA expression and TH positive cell in the test group were 0.97±0.15 and 49.40±14.72,respectively,which were significantly higher than those in the model group,0.22±0.03 and 5.45±2.58,respectively(all P〈0.01).Conclusion:BHD could treat PD by enhancing the Nurr1 mRNA expression,increasing the TH content in brain,and promoting the repairing of injured neuron in cerebral SSN.展开更多
Objective: This present study is to investigate the biochemical adaptations in the rdated brain regions of the mesolimbic dopamine system, such as the ventral tegmental area (VFA), nucleus accumbens (NAc), amygda...Objective: This present study is to investigate the biochemical adaptations in the rdated brain regions of the mesolimbic dopamine system, such as the ventral tegmental area (VFA), nucleus accumbens (NAc), amygdale (Amy), prefrontal cortex (PFC) , substantia nigra (SN) and caudateputamen (CPu) in response to heroin self-administration in rats and observe the effect of electroacupuncture on them. Methods. Thirty rats were trained by nose-poking response to establish stable intravenous heroin self-administration within 14 days, and then divided randomly into model group (group B) including 6 rats, withdrawal group which were withdrawn from heroin for 1 week (group C, n = 6) and for 2 weeks (group D, n= 6), during which time they only lived in their individual home cages, and dectrtyacupuncture group which were also withdrawn from heroin for 1 week (group E, n= 6) and for 2 weeks (group F, n = 6), during which time they were given electro-acupuncture treatment for 20 min daily and then returned to their individual home cages; in the meantime, another 6 rats were trained by nose-poking response with saline for 14 days as control (group A); Then the leeds of tyrosine hydroxylase (TH) and glial fibrillary acidic protein (GFAP) in VFA, NAc, Amy, PFC, SN, CPu were detected with immunohistochemistry method. Results. The leeds of TH and GFAP in VFA of the heroin self administrating rats were obviously increased, and the leeds of TH and GFAP in NAc were also decreased, and these changes were not found in SN, CPu, Amy and PFC; Electro-acupuncture could promote the up regulation of TH and GFAP in VTA and down-regulation of TH and GFAP in NAc to return to the normal leeel. Conclusions: The chronic heroin self administration produced some biochemical adaptations in the related brain regions of the mesolimbic dopamine system and electroacupuncture could promote the repair of the "injured" DA neurons in VTA of heroin addicted rats and their functional recovery.展开更多
Mitochondrial dysfunction is a significant pathological alte ration that occurs in Parkinson's disease(PD),and the Thr61lle(T61I)mutation in coiled-coil helix coiled-coil helix domain containing 2(CHCHD2),a crucia...Mitochondrial dysfunction is a significant pathological alte ration that occurs in Parkinson's disease(PD),and the Thr61lle(T61I)mutation in coiled-coil helix coiled-coil helix domain containing 2(CHCHD2),a crucial mitochondrial protein,has been reported to cause Parkinson's disease.FIFO-ATPase participates in the synthesis of cellular adenosine triphosphate(ATP)and plays a central role in mitochondrial energy metabolism.However,the specific roles of wild-type(WT)CHCHD2 and T611-mutant CHCHD2 in regulating F1FO-ATPase activity in Parkinson's disease,as well as whether CHCHD2 or CHCHD2 T61I affects mitochondrial function through regulating F1FO-ATPase activity,remain unclea r.Therefore,in this study,we expressed WT CHCHD2 and T61l-mutant CHCHD2 in an MPP^(+)-induced SH-SY5Y cell model of PD.We found that CHCHD2 protected mitochondria from developing MPP^(+)-induced dysfunction.Under normal conditions,ove rexpression of WT CHCHD2 promoted F1FO-ATPase assembly,while T61I-mutant CHCHD2 appeared to have lost the ability to regulate F1FO-ATPase assembly.In addition,mass spectrometry and immunoprecipitation showed that there was an interaction between CHCHD2 and F1FO-ATPase.Three weeks after transfection with AAV-CHCHD2 T61I,we intraperitoneally injected 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine into mice to establish an animal model of chronic Parkinson's disease and found that exogenous expression of the mutant protein worsened the behavioral deficits and dopaminergic neurodegeneration seen in this model.These findings suggest that WT CHCHD2 can alleviate mitochondrial dysfunction in PD by maintaining F1F0-ATPase structure and function.展开更多
Parkinson’s disease is a neurodegenerative disorder,and fe rroptosis plays a significant role in the pathological mechanism underlying Parkinson’s disease.Rapamycin,an autophagy inducer,has been shown to have neurop...Parkinson’s disease is a neurodegenerative disorder,and fe rroptosis plays a significant role in the pathological mechanism underlying Parkinson’s disease.Rapamycin,an autophagy inducer,has been shown to have neuroprotective effects in Parkinson’s disease.However,the link between rapamycin and ferroptosis in Parkinson’s disease is not entirely clear.In this study,rapamycin was administe red to a 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-induced Parkinson’s disease mouse model and a 1-methyl-4-phenylpyridinium-induced Parkinson’s disease PC12 cell model.The results showed that rapamycin improved the behavioral symptoms of Parkinson’s disease model mice,reduced the loss of dopamine neurons in the substantia nigra pars compacta,and reduced the expression of ferroptosis-related indicators(glutathione peroxidase 4,recombinant solute carrier family 7,member 11,glutathione,malondialdehyde,and reactive oxygen species).In the Parkinson’s disease cell model,rapamycin improved cell viability and reduced ferro ptosis.The neuroprotective effect of rapamycin was attenuated by a ferroptosis inducer(methyl(1S,3R)-2-(2-chloroacetyl)-1-(4-methoxycarbonylphenyl)-1,3,4,9-tetrahyyridoindole-3-carboxylate)and an autophagy inhibitor(3-methyladenine).Inhibiting ferro ptosis by activating autophagy may be an important mechanism by which rapamycin exerts its neuroprotective effects.Therefo re,the regulation of ferroptosis and autophagy may provide a therapeutic target for drug treatments in Parkinson’s disease.展开更多
Previous studies have found that deficiency in nuclear receptor-related factor 1(Nurr1),which participates in the development,differentiation,survival,and degeneration of dopaminergic neurons,is associated with Parkin...Previous studies have found that deficiency in nuclear receptor-related factor 1(Nurr1),which participates in the development,differentiation,survival,and degeneration of dopaminergic neurons,is associated with Parkinson s disease,but the mechanism of action is perplexing.Here,we first asce rtained the repercussion of knocking down Nurr1 by pe rforming liquid chromatography coupled with tandem mass spectrometry.We found that 231 genes were highly expressed in dopaminergic neurons with Nurr1 deficiency,14 of which were linked to the Parkinson’s disease pathway based on Kyoto Encyclopedia of Genes and Genomes analysis.To better understand how Nurr1 deficiency autonomously invokes the decline of dopaminergic neurons and elicits Parkinson’s disease symptoms,we performed single-nuclei RNA sequencing in a Nurr1 LV-shRNA mouse model.The results revealed cellular heterogeneity in the substantia nigra and a number of activated genes,the preponderance of which encode components of the major histocompatibility Ⅱ complex.Cd74,H2-Ab1,H2-Aα,H2-Eb1,Lyz2,Mrc1,Slc6α3,Slc47α1,Ms4α4b,and Ptprc2 were the top 10 diffe rentially expressed genes.Immunofluorescence staining showed that,after Nurr1knockdown,the number of CD74-immunoreactive cells in mouse brain tissue was markedly increased.In addition,Cd74 expression was increased in a mouse model of Parkinson’s disease induced by treatment with 6-hydroxydopamine.Ta ken togethe r,our res ults suggest that Nurr1 deficiency results in an increase in Cd74 expression,thereby leading to the destruction of dopaminergic neuro ns.These findings provide a potential therapeutic target for the treatment of Parkinson’s disease.展开更多
Aim To observe the neuroprotective effects of modafinil on the Parkinson'sdisease ( PD ) model induced by 1-methyl-4-phenyl-1, 2,3, 6-tetrahydropyridine (MPTP ). Methods Themodel of PD was induced by intraperitone...Aim To observe the neuroprotective effects of modafinil on the Parkinson'sdisease ( PD ) model induced by 1-methyl-4-phenyl-1, 2,3, 6-tetrahydropyridine (MPTP ). Methods Themodel of PD was induced by intraperitoneal injection of MPTP into C57BL/6J mice for 4 d. Modafinil(ip, 50 or 100 mg·kg^(-1)·d^(-1)) was administered following MPTP for 4 d and for another 10 dconsecatirely. The effects of modafinil on the locomotor activity, and the incubation, maintenanceperiod and grade of the tremor, the duration of the climbing rod of mouse, and the distribution ofpositive cells of ty-rosine hydroxylase (TH) and Nissl bodies in the striatum and substantia nigra(SN) were observed. The contents of dopam-ine (DA) , noradrenaline (NA) and 5-hydroxytryptamine(5-HT) in the striatum were determined. Results Modafinil (50 and 100 mg·kg^(-1)) significantlyprevented the locomotor, the tremor and climbing rod defect behavior in a dose-dependent manner (P <0.05 and P < 0.01, n = 10), prevented the decrease in the number of TH-positive cells and Nisslbodies (P<0.05, n=10), and reduced the decrease of DA, NA, and 5-HT in the striatum (P < 0.05, n =10) induced by MPTP. Conclusion Modafinil improves the behavioral deficits and prevents themonoaminergic neuron lesion in seriously impaired MPTP mouse model.展开更多
A large body of evidence shows that spinal circuits are significantly affected by training, and that intrinsic circuits that drive locomotor tasks are located in lumbosacral spinal segments in rats with complete spina...A large body of evidence shows that spinal circuits are significantly affected by training, and that intrinsic circuits that drive locomotor tasks are located in lumbosacral spinal segments in rats with complete spinal cord transection. However, after incomplete lesions, the effect of treadmil training has been debated, which is likely because of the difficulty of separating spontaneous stepping from specific training-induced effects. In this study, rats with moderate spinal cord contusion were sub-jected to either step training on a treadmil or used in the model (control) group. The treadmil training began at day 7 post-injury and lasted 20 ± 10 minutes per day, 5 days per week for 10 weeks. The speed of the treadmil was set to 3 m/min and was increased on a daily basis according to the tolerance of each rat. After 3 weeks of step training, the step training group exhibited a sig-nificantly greater improvement in the Basso, Beattie and Bresnahan score than the model group. The expression of growth-associated protein-43 in the spinal cord lesion site and the number of tyrosine hydroxylase-positive ventral neurons in the second lumbar spinal segment were greater in the step training group than in the model group at 11 weeks post-injury, while the levels of brain-derived neurotrophic factor protein in the spinal cord lesion site showed no difference between the two groups. These results suggest that treadmil training significantly improves functional re-covery and neural plasticity after incomplete spinal cord injury.展开更多
Neurons in the laterodorsal tegmentum (LDTg) and pedunculopontine tegmental nucleus (PPTg) play important roles in central autonomic circuits of the kidney. In this study, we used a combination of retrograde tracers p...Neurons in the laterodorsal tegmentum (LDTg) and pedunculopontine tegmental nucleus (PPTg) play important roles in central autonomic circuits of the kidney. In this study, we used a combination of retrograde tracers pseudorabies virus (PRV)-614 and fluorescence immunohistochemistry to characterize the neuroanatomic substrate of PPTg and LDTg innervating the kidney in the mouse. PRV-614-infected neurons were retrogradely labeled in the rostral and middle parts of LDTg, and the middle and caudal parts of PPTg after tracer injection in the kidney. PRV-614/TPH double-labeled neurons were mainly localized in the rostral of LDTg, whereas PRV-614/TH neurons were scattered within the three parts of LDTg. PRV-614/TPH and PRV-614/TH neurons were located predominantly in the caudal of PPTg (cPPTg). These data provided direct neuroanatomical foundation for the identification of serotonergic and catecholaminergic projections from the mid-brain tegmentum to the kidney.展开更多
Previous studies showed that tyrosine hydroxylase or neurturin gene-modified cells transplanted into rats with Parkinson's disease significantly improved behavior and increased striatal dopamine content. In the prese...Previous studies showed that tyrosine hydroxylase or neurturin gene-modified cells transplanted into rats with Parkinson's disease significantly improved behavior and increased striatal dopamine content. In the present study, we transplanted tyrosine hydroxylase and neurturin gene-modified bone marrow-derived mesenchymal stem cells into the damaged striatum of Parkinson's disease model rats. Several weeks after cell transplantation, in addition to an improvement of motor function tyrosine hydroxylase and neurturin proteins were up-regulated in the injured striatum, and importantly, levels of dopamine and its metabolite 3,4-dihydroxyphenylacetic acid increased significantly. Furthermore, the density of the D2 dopamine receptor in the postsynaptic membranes of dopaminergic neurons was decreased. These results indicate that transplantation of tyrosine hydroxylase and neurturin gene-modified bone marrow-derived mesenchymal stem cells increases dopamine synthesis and significantly improves the behavior of rats with Parkinson's disease.展开更多
Because neurons are susceptible to oxidative damage and thioredoxin reductase 1 is extensively distributed in the central nervous system and has antioxidant properties, we speculated that the enzyme may be involved in...Because neurons are susceptible to oxidative damage and thioredoxin reductase 1 is extensively distributed in the central nervous system and has antioxidant properties, we speculated that the enzyme may be involved in the pathogenesis of Parkinson's disease. A Parkinson's disease model was produced by intraperitoneal injection of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine into C57BL/6 mice. Real-time reverse transcription-PCR, western blot analysis and colorimetric assay showed that the levels of thioredoxin reductase 1 mRNA and protein were decreased, along with a significant reduction in thioredoxin reductase activity, in the midbrain of Parkinson's disease mice compared with normal mice. Immunohistochemical staining revealed that the number of thioredoxin reductase 1-positive neurons in the substantia nigra pars compacta of Parkinson's disease mice was significantly decreased compared with normal mice. These experimental findings suggest that the expression of thioredoxin reductase 1 in the substantia nigra pars compacta of Parkinson's disease mice is significantly decreased, and that the enzyme may be associated with disease onset.展开更多
Studies have shown that estrogen has neuroprotective effects on the nigrostriatal system. The present study established a Parkinson's disease model in C57BL/6 mice by intraperitoneal injection of 1-methyl-4-phenyl-1,...Studies have shown that estrogen has neuroprotective effects on the nigrostriatal system. The present study established a Parkinson's disease model in C57BL/6 mice by intraperitoneal injection of 1-methyl-4-phenyl-1,2,3,6-tetrapyridine. The mice were subjected to 1713 estradiol injection into the lateral ventricle. Immunofluorescence double staining showed that estrogen increased tyrosine hydroxylase and calbindin-D28K expression and co-expression in dopaminergic neurons of midbrain substantia nigra pars compacta of model mice. Behavior experiments showed that estrogen improved swimming and hanging behaviors in this mouse model of Parkinson's disease.展开更多
In this study, rat models of Parkinson's disease induced by substantia nigra injection of 6-hydroxy-dopamine were intragastrically administered Zhichan powder daily for 50 days. Reverse transcription PCR results show...In this study, rat models of Parkinson's disease induced by substantia nigra injection of 6-hydroxy-dopamine were intragastrically administered Zhichan powder daily for 50 days. Reverse transcription PCR results showed that tyrosine hydroxylase mRNA expression in the rat substantia nigra was significantly increased, while monoamine oxidase B mRNA expression was significantly decreased in the Zhichan powder group, compared with the model group. In addition, the levels of striatal dopamine and homovanillic acid, the ratio of dopamine to homovanillic acid, and the activity of blood superoxide dismutase were all higher in the Zhichan powder group than in the model group but the content of malondialdehyde in blood was lower. Our experimental findings indicate that Zhichan powder has an antioxidant effect, it can regulate the expression of monoamine oxidase B and tyrosine hydroxylase in the substantia nigra of Parkinson's disease rats, and it can facilitate the secretion of striatal dopamine and its metabolite homovanillic acid.展开更多
基金This work was supported by the Key Project of National Natural Science Foundation of China (No. 30430280)the National Natural Science Foundation of China (No. 30271437, No.30270482)the Natural Science Foundation of Beijing Municipality (No. 7022011 ).
文摘Objective To approach the associated mechanism by which α-synuclein (α-Syn) might regulate the metabolism of dopamine. Methods A DNA fragment, located at --495 to +25 of the human tyrosine hydroxylase (TH) gene, was amplified by PCR and inserted into the pGL3-Basic luciferase reporter vector. The recombinant plasmid pGL3-THprom was transfected into a dopammergic cell line MES23.5 or a α-Syn over-expressed MES23.5 (named MES23.5/hα-Syn^+). The promoter activity was detected by the Dual Luciferase Assay System. Results The luciferase activities in the MES23.5 cells transfected with pGl.,3-Basic, pGL3-THprom, and pGL3-Control vectors were 5.60±0.67, 26.80±4.11, and 32.90±4.75, respectively. On the other hand, the luciferase activity of pGL3-THprom in the MES23.5 (26.80±4.11) was significantly higher than that in the MES23.5/hα-Syn^+(14.40±0.61) (P〈0.01). Conclusion These results indicate that the -495 to +25 region in the TH gene possesses promoter activity for controlling the gene expression, and that α-Syn may negatively regulate the metabolism of dopamine by affecting the function of TH promoter as a trans-acting factor.
基金supported by a grant from Science and Technology Support Traditional Chinese Drug Research and Development Project of Shanghai of China,No.12401900302Traditional Chinese Medicine Research Foundation of Shanghai Municipal Health Bureau of China,No.2012J009A+2 种基金a grant from Annual Research Budget of Shanghai University of Traditional Chinese Medicine of China in 2013,No.2013JW25the National Natural Science Foundation of China,No.3067268430973722
文摘Tyrosine hydroxylase is a key enzyme in dopamine biosynthesis. Change in tyrosine hydroxylase expression in the nigrostriatal system is closely related to the occurrence and development of Parkinson's disease. Verbascoside, an extract from Radix Rehmanniae Praeparata has been shown to be clinically effective in treating Parkinson's disease. However, the underlying mechanisms remain unclear. It is hypothesized that the effects of verbascoside on Parkinson's disease are related to tyrosine hydroxylase expression change in the nigrostriatal system. Rat models of Parkinson's disease were established and verbascoside(60 mg/kg) was administered intraperitoneally once a day. After 6 weeks of verbascoside treatment, rat rotational behavior was alleviated; tyrosine hydroxylase m RNA and protein expression and the number of tyrosine hydroxylase-immunoreactive neurons in the rat right substantia nigra were significantly higher than the Parkinson's model group. These findings suggest that the mechanism by which verbascoside treats Parkinson's disease is related to the regeneration of tyrosine hydroxylase-immunoreactive neurons in the substantia nigra.
基金supported by the National Natural Science Foundation of China (Influence of visual deprivation on bipolar cell synaptic formation and degeneration following opticnerve transection), No. 30671100
文摘The present study examined changes in retinal tyrosine hydroxylase (TH) expression in rats having undergone optic nerve transection and housed under a normal day/night cycle or in the dark. The aim was to investigate the effects of amacrine cells on axonal regeneration in retinal ganglion cells and on the synapses that transmit visual signals. The results revealed that retinal TH expression gradually decreased following optic nerve transection in rats housed under a normal day/night cycle reaching a minimum at 5 days. In contrast, retinal TH expression decreased to a minimum at 1 day following optic nerve transection in dark reared rats, gradually increasing afterward and reaching a normal level at 5 7 days. The number of TH-positive synaptic particles correlated with the TH levels indicating that dark rearing can help maintain TH expression during the synaptic degeneration stage (5 7 days after optic nerve injury) in retinal amacrine cells.
基金Projects of Heilongjiang Province Administration of Traditional Chinese Medicine,No.ZH04Z74Second-Class Award of Scientific Advancement of Heilongjiang Province Administration of Traditional Chinese Medicine in 2007
文摘This study showed that abnormal behavioral changes were greatly improved in rats displaying Parkinson's disease-like symptoms after intragastric administration of Xifeng Dingchan decoction at 15, 7.5, 3.75 g/kg per day. In addition, tyrosine hydroxylase mRNA expression in the substantia nigra of the midbrain was up-regulated, and tyrosine hydroxylase content in the midbrain ventral tegmentum and substantia nigra pars compacta was also increased. The effect of administration of Xifeng Dingchan decoction at 7.5 g/kg per day was similar to that of Madopar at 67.5 mg/kg per day. These results indicate that the therapeutic effect of Xifeng Dingchan decoction on Parkinson's disease is associated with the up-regulated protein and mRNA expression of tyrosine hydroxylase in the midbrain.
基金This work was supported by National Natural Science Foundation of China (No: 30371225).
文摘Objective To study the effects of deltamethrin on tyrosine hydroxylase in nigrostriatum of male rats. Methods Sprague-Dawley rats were daily treated with deltamethrin at 6.25 or 12.5 mg/kg body weight by gavage for 10 days. Then HPLC-fluorescence detection was used to analyze the contents of dopamine (DA), 3,4-dihydmxyphenylacetic acid (DOPAC) and homoranillic acid (HVA) in substantial nigra and striatum. The activities of tyrosine hydroxylase (TH) were also detected by HPLC-fluorescence detection. TH mRNA or TH protein levels were measured by RT-PCR and immunohistochemistry method. Results The content of DA in stfiatum was significantly decreased by the treatments, suggesting an inhibition of DA synthesis by deltamethrin. The contents of DA metabolites DOPAC and HVA increased, indicating increased dopamine turnover. Furthermore, deltamethrin significantly decreased the activity, as well as the mRNA and protein levels of TH. Conclusions These findings reveal a novel aspect of deltamethfin neurotoxicity and suggest tyrosine hydroxylase as a molecular target of deltamethin on dopamine metabolism in the nigrostriatal pathway.
基金the National Natural Science Foundation of China,No.50677022
文摘BACKGROUND: Electromagnetic radiation can influence dopamine (DA) synthesis in brain tissues or ceils, but electromagnetic frequencies, intensities, and radiation time can produce different effects. In addition, the signal pathway by which electromagnetic radiation influences DA synthesis remains controversial. OBJECTIVE: To determine tyrosine hydroxylase (TH) expression in PC12 cells and DA levels in cell culture media after different periods of low-frequency pulsed electric field (LF-PEF) stimulation, and to determine how LF-PEF signaling stimulates TH synthesis using inhibitors. DESIGN, TIME AND SETTING: A parallel, controlled, cell experiment was performed at the Laboratory of Cell Biology, School of Life Science, East China Normal University, between January and October 2006. MATERIALS: PC12 cells were purchased from the Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, China. Nerve growth factor was purchased from PeproTech, USA. The protein kinase A inhibitor, H-89, and mitogen-activated protein kinase kinase inhibitor, U0126, were purchased from Sigma, USA. METHODS: (1) Following routine culture in Dulbecco's modified eagle medium, primary PC12 cells were stimulated under LF-PEF (pulse frequency 50.Hz, pulse width 20 μs, peak field strength 1 V/m) for 5, 10, 15, 20, and 30 minutes. (2) Inhibitors (H-89 or U0126, 1 μmol/L) were added 30 minutes before LF-PEF stimulation for 10 minutes. MAIN OUTCOME MEASURES: (1) TH expression was determined by Western blot in PC12 cells at 0.5, 1,2, 3, and 4 days after LF-PEF stimulation. Similarly, DA was measured by high-performance liquid chromatography in media at 2, 3, 4, or 5 days after LF-PEE (2) TH expression was detected 1 day after H-89 or U0126 treatment and LF-PEE RESULTS: (1) Short-term LF-PEF stimulation (5 and 10 minutes) increased TH expression and media DA levels after short-term culture (2 days) (P 〈 0.01), but both parameters decreased with longer culture (3 4 days) (P 〈 0.01). Long-term LF-PEF stimulation (15, 20, or 30 minutes) decreased TH and DA synthesis, followed by a rapid increase (P 〈 0.01). (2) H89 could completely inhibit TH expression in PC12 cells stimulated by LF-PEF for 10 minutes, while the inhibition rate of U0126 was 53.2%. CONCLUSION: Short-term LF-PEF first promotes then inhibits, while long-term LF-PEF first inhibits then promotes, TH and DA synthesis. LF-PEF stimulation regulates TH expression primarily by activating protein kinase A to regulate DA synthesis.
文摘The use of gene therapy has been intensively studied as a potential method to treat Parkinson’s disease (PD) and other degenerative brain diseases. However, the effects of experimental measures and approaches on the outcome of gene delivery or on the physiological state of target tissues have not been analyzed as much and systematically. Therefore, we have infused adenovirus vectors expressing either a therapeutic tyrosine hydroxylase (TH) gene or a lacZ reporter gene into striatum in a rat model of PD. The experimental procedures were tested using the Ad lacZ vector in order to optimize concentrations, volumes, infusion speeds and transfection times. The expression of Ad lacZ vector was lower and declined earlier in the lesioned than unlesioned striatum suggesting that the lesion affects on the transfection efficiency and outcome of gene transfection. The effect of three different approaches of Ad TH vector transfection was compared: 1) the delivery of Ad TH gene vector alone into one single site of striatum, 2) the delivery of Ad TH gene vector alone into multiple sites of striatum, and 3) the delivery of Ad TH gene vector into one site of striatum followed by a continuous infusion of tetrahydrobiopterin (BH4) cofactor with a mini pump. There was a small and transient unsignificant decrease in the turning behavior when the Ad TH vector was delivered into one site of the striatum. Simultaneous infusion into several sites or together with BH4 cofactor did not improve more the effect of gene delivery. Thus, although the effects were unsignificant, the Ad TH transfection seemed to decrease the turning behavior in the rat model of PD and the optimal effect was seen at some specific doses and time points. Furthermore, the outcome of gene therapy could depend in addition to the amount and efficacy of gene vectors also on the physiological state and experimental strategies.
基金This work was supported by National Natural Science Foundation of China(Nos.22175085 and 21875101)National Key Research and Development Program of China(No.2017YFA0701301)State Key Laboratory of Analytical Chemistry for Life Science(No.SKLACLS2219).
文摘In recent years,neurodegenerative diseases,such as Parkinson’s or Alzheimer’s diseases,are rapidly rising in prevalence.The main hallmark of Parkinson’s disease is the falling levels of neurotransmitter dopamine in the mid-brain with dopaminergic neurons losing.Typical therapeutic solutions,including drugs,deep brain stimulation,and cell transplantation,can only alleviate the symptoms of Parkinson’s disease.It is a tremendous challenge to reverse the function degeneration of the crucial dopaminergic neurons.Herein,we develop a core-satellite-like nanoassembly(PDA-AFn(by integrating polydopamine nanoparticles and apoferritin))to raise the expression of tyrosine hydroxylase(TH),a rate-limiting enzyme in the formation of the dopamine.Both components in the nanoassembly could cooperate with each other,not only elaborately regulate the iron homeostasis and redox microenvironment,but also utilize excessive reactive oxygen species(ROS)and iron ions in the damaged neurons to supply extra dopamine and enhance TH activity,and consequently restore the function of the degenerated neurons.Remarkably,the nanoassembly-treatment relieves the dyskinesia and dramatical increases the tyrosine hydroxylase and dopamine level in the midbrain of Parkinson’s disease model mice.It is an explicit yet inspiring advance in treatment of the neurodegeneration.
基金Supported by National Natural Science Foundation of China (No.30672762)
文摘Objective:To explore the effect of Bushen Huoxue Decoction(补肾活血饮,BHD) on the orphan receptor(Nurr1) and tyrosine hydroxylase(TH) in the brain of rats with Parkinson's disease(PD).Methods:One hundred and twenty SD rats were divided into 100 in the model group and 20 in the normal control group,fifty-eight SD rats from the model group,established into PD model successfully by injuring their substantia nigra (SSN) with 6-hydroxydopamine,were divided equally into the model group and the test group,and they were treated with saline and BHD,respectively,for eight successive weeks.The change in the rats' behavior before and after treatment was observed by counting the cycles of rotation induced by apomorphine injection; the pathology of neurons,level of Nurr1 mRNA expression,and amount of TH positive cells in SSN were observed after treatment.Results:The rats' behavior was improved in the tested group significantly,the rotation cycle after treatment being 84.0±20.0 cycles/40 min,which was significantly lower than that in the model group(377.0±62.3 cycles/40 min,P〈0.01).Besides,the Nurr1 mRNA expression and TH positive cell in the test group were 0.97±0.15 and 49.40±14.72,respectively,which were significantly higher than those in the model group,0.22±0.03 and 5.45±2.58,respectively(all P〈0.01).Conclusion:BHD could treat PD by enhancing the Nurr1 mRNA expression,increasing the TH content in brain,and promoting the repairing of injured neuron in cerebral SSN.
基金Supported by the National Nature Science Foundation(30271637)the State Administration of TCM(02-03LQ05)
文摘Objective: This present study is to investigate the biochemical adaptations in the rdated brain regions of the mesolimbic dopamine system, such as the ventral tegmental area (VFA), nucleus accumbens (NAc), amygdale (Amy), prefrontal cortex (PFC) , substantia nigra (SN) and caudateputamen (CPu) in response to heroin self-administration in rats and observe the effect of electroacupuncture on them. Methods. Thirty rats were trained by nose-poking response to establish stable intravenous heroin self-administration within 14 days, and then divided randomly into model group (group B) including 6 rats, withdrawal group which were withdrawn from heroin for 1 week (group C, n = 6) and for 2 weeks (group D, n= 6), during which time they only lived in their individual home cages, and dectrtyacupuncture group which were also withdrawn from heroin for 1 week (group E, n= 6) and for 2 weeks (group F, n = 6), during which time they were given electro-acupuncture treatment for 20 min daily and then returned to their individual home cages; in the meantime, another 6 rats were trained by nose-poking response with saline for 14 days as control (group A); Then the leeds of tyrosine hydroxylase (TH) and glial fibrillary acidic protein (GFAP) in VFA, NAc, Amy, PFC, SN, CPu were detected with immunohistochemistry method. Results. The leeds of TH and GFAP in VFA of the heroin self administrating rats were obviously increased, and the leeds of TH and GFAP in NAc were also decreased, and these changes were not found in SN, CPu, Amy and PFC; Electro-acupuncture could promote the up regulation of TH and GFAP in VTA and down-regulation of TH and GFAP in NAc to return to the normal leeel. Conclusions: The chronic heroin self administration produced some biochemical adaptations in the related brain regions of the mesolimbic dopamine system and electroacupuncture could promote the repair of the "injured" DA neurons in VTA of heroin addicted rats and their functional recovery.
基金supported by the National Natural Science Foundation of China(Youth Program),No.81901282(to XC)the National Natural Science Foundation of China,Nos.81401416(to PX),81870992(to PX),81870856(to XC and MZ)+3 种基金Guangdong Basic and Applied Basic Research Foundation the Science Foundation,No.2019A1515011189(to XC)Central Government Guiding Local Science and Technology Development Projects,No.ZYYD2022C17(to PX)Key Project of Guangzhou Health Commission,No.2019-ZD-09(to PX)Science and Technology Planning Project of Guangzhou,Nos.202102020029(to XC),202102010010(to PX)。
文摘Mitochondrial dysfunction is a significant pathological alte ration that occurs in Parkinson's disease(PD),and the Thr61lle(T61I)mutation in coiled-coil helix coiled-coil helix domain containing 2(CHCHD2),a crucial mitochondrial protein,has been reported to cause Parkinson's disease.FIFO-ATPase participates in the synthesis of cellular adenosine triphosphate(ATP)and plays a central role in mitochondrial energy metabolism.However,the specific roles of wild-type(WT)CHCHD2 and T611-mutant CHCHD2 in regulating F1FO-ATPase activity in Parkinson's disease,as well as whether CHCHD2 or CHCHD2 T61I affects mitochondrial function through regulating F1FO-ATPase activity,remain unclea r.Therefore,in this study,we expressed WT CHCHD2 and T61l-mutant CHCHD2 in an MPP^(+)-induced SH-SY5Y cell model of PD.We found that CHCHD2 protected mitochondria from developing MPP^(+)-induced dysfunction.Under normal conditions,ove rexpression of WT CHCHD2 promoted F1FO-ATPase assembly,while T61I-mutant CHCHD2 appeared to have lost the ability to regulate F1FO-ATPase assembly.In addition,mass spectrometry and immunoprecipitation showed that there was an interaction between CHCHD2 and F1FO-ATPase.Three weeks after transfection with AAV-CHCHD2 T61I,we intraperitoneally injected 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine into mice to establish an animal model of chronic Parkinson's disease and found that exogenous expression of the mutant protein worsened the behavioral deficits and dopaminergic neurodegeneration seen in this model.These findings suggest that WT CHCHD2 can alleviate mitochondrial dysfunction in PD by maintaining F1F0-ATPase structure and function.
文摘Parkinson’s disease is a neurodegenerative disorder,and fe rroptosis plays a significant role in the pathological mechanism underlying Parkinson’s disease.Rapamycin,an autophagy inducer,has been shown to have neuroprotective effects in Parkinson’s disease.However,the link between rapamycin and ferroptosis in Parkinson’s disease is not entirely clear.In this study,rapamycin was administe red to a 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-induced Parkinson’s disease mouse model and a 1-methyl-4-phenylpyridinium-induced Parkinson’s disease PC12 cell model.The results showed that rapamycin improved the behavioral symptoms of Parkinson’s disease model mice,reduced the loss of dopamine neurons in the substantia nigra pars compacta,and reduced the expression of ferroptosis-related indicators(glutathione peroxidase 4,recombinant solute carrier family 7,member 11,glutathione,malondialdehyde,and reactive oxygen species).In the Parkinson’s disease cell model,rapamycin improved cell viability and reduced ferro ptosis.The neuroprotective effect of rapamycin was attenuated by a ferroptosis inducer(methyl(1S,3R)-2-(2-chloroacetyl)-1-(4-methoxycarbonylphenyl)-1,3,4,9-tetrahyyridoindole-3-carboxylate)and an autophagy inhibitor(3-methyladenine).Inhibiting ferro ptosis by activating autophagy may be an important mechanism by which rapamycin exerts its neuroprotective effects.Therefo re,the regulation of ferroptosis and autophagy may provide a therapeutic target for drug treatments in Parkinson’s disease.
基金supported by the National Natural Science Foundation of China,No. 81971006 (to DSG)。
文摘Previous studies have found that deficiency in nuclear receptor-related factor 1(Nurr1),which participates in the development,differentiation,survival,and degeneration of dopaminergic neurons,is associated with Parkinson s disease,but the mechanism of action is perplexing.Here,we first asce rtained the repercussion of knocking down Nurr1 by pe rforming liquid chromatography coupled with tandem mass spectrometry.We found that 231 genes were highly expressed in dopaminergic neurons with Nurr1 deficiency,14 of which were linked to the Parkinson’s disease pathway based on Kyoto Encyclopedia of Genes and Genomes analysis.To better understand how Nurr1 deficiency autonomously invokes the decline of dopaminergic neurons and elicits Parkinson’s disease symptoms,we performed single-nuclei RNA sequencing in a Nurr1 LV-shRNA mouse model.The results revealed cellular heterogeneity in the substantia nigra and a number of activated genes,the preponderance of which encode components of the major histocompatibility Ⅱ complex.Cd74,H2-Ab1,H2-Aα,H2-Eb1,Lyz2,Mrc1,Slc6α3,Slc47α1,Ms4α4b,and Ptprc2 were the top 10 diffe rentially expressed genes.Immunofluorescence staining showed that,after Nurr1knockdown,the number of CD74-immunoreactive cells in mouse brain tissue was markedly increased.In addition,Cd74 expression was increased in a mouse model of Parkinson’s disease induced by treatment with 6-hydroxydopamine.Ta ken togethe r,our res ults suggest that Nurr1 deficiency results in an increase in Cd74 expression,thereby leading to the destruction of dopaminergic neuro ns.These findings provide a potential therapeutic target for the treatment of Parkinson’s disease.
文摘Aim To observe the neuroprotective effects of modafinil on the Parkinson'sdisease ( PD ) model induced by 1-methyl-4-phenyl-1, 2,3, 6-tetrahydropyridine (MPTP ). Methods Themodel of PD was induced by intraperitoneal injection of MPTP into C57BL/6J mice for 4 d. Modafinil(ip, 50 or 100 mg·kg^(-1)·d^(-1)) was administered following MPTP for 4 d and for another 10 dconsecatirely. The effects of modafinil on the locomotor activity, and the incubation, maintenanceperiod and grade of the tremor, the duration of the climbing rod of mouse, and the distribution ofpositive cells of ty-rosine hydroxylase (TH) and Nissl bodies in the striatum and substantia nigra(SN) were observed. The contents of dopam-ine (DA) , noradrenaline (NA) and 5-hydroxytryptamine(5-HT) in the striatum were determined. Results Modafinil (50 and 100 mg·kg^(-1)) significantlyprevented the locomotor, the tremor and climbing rod defect behavior in a dose-dependent manner (P <0.05 and P < 0.01, n = 10), prevented the decrease in the number of TH-positive cells and Nisslbodies (P<0.05, n=10), and reduced the decrease of DA, NA, and 5-HT in the striatum (P < 0.05, n =10) induced by MPTP. Conclusion Modafinil improves the behavioral deficits and prevents themonoaminergic neuron lesion in seriously impaired MPTP mouse model.
基金sponsored by the National Natural Science Foundation of China,No.30872604,81171862
文摘A large body of evidence shows that spinal circuits are significantly affected by training, and that intrinsic circuits that drive locomotor tasks are located in lumbosacral spinal segments in rats with complete spinal cord transection. However, after incomplete lesions, the effect of treadmil training has been debated, which is likely because of the difficulty of separating spontaneous stepping from specific training-induced effects. In this study, rats with moderate spinal cord contusion were sub-jected to either step training on a treadmil or used in the model (control) group. The treadmil training began at day 7 post-injury and lasted 20 ± 10 minutes per day, 5 days per week for 10 weeks. The speed of the treadmil was set to 3 m/min and was increased on a daily basis according to the tolerance of each rat. After 3 weeks of step training, the step training group exhibited a sig-nificantly greater improvement in the Basso, Beattie and Bresnahan score than the model group. The expression of growth-associated protein-43 in the spinal cord lesion site and the number of tyrosine hydroxylase-positive ventral neurons in the second lumbar spinal segment were greater in the step training group than in the model group at 11 weeks post-injury, while the levels of brain-derived neurotrophic factor protein in the spinal cord lesion site showed no difference between the two groups. These results suggest that treadmil training significantly improves functional re-covery and neural plasticity after incomplete spinal cord injury.
基金supported by grants from National Natural Science Foundation of China(No.81071307,No.30872440,No.81171259)
文摘Neurons in the laterodorsal tegmentum (LDTg) and pedunculopontine tegmental nucleus (PPTg) play important roles in central autonomic circuits of the kidney. In this study, we used a combination of retrograde tracers pseudorabies virus (PRV)-614 and fluorescence immunohistochemistry to characterize the neuroanatomic substrate of PPTg and LDTg innervating the kidney in the mouse. PRV-614-infected neurons were retrogradely labeled in the rostral and middle parts of LDTg, and the middle and caudal parts of PPTg after tracer injection in the kidney. PRV-614/TPH double-labeled neurons were mainly localized in the rostral of LDTg, whereas PRV-614/TH neurons were scattered within the three parts of LDTg. PRV-614/TPH and PRV-614/TH neurons were located predominantly in the caudal of PPTg (cPPTg). These data provided direct neuroanatomical foundation for the identification of serotonergic and catecholaminergic projections from the mid-brain tegmentum to the kidney.
基金supported by grants from the Ministryof Health of China, No. 2011010009the Science and Technology Department of Henan Province, No.112102310230
文摘Previous studies showed that tyrosine hydroxylase or neurturin gene-modified cells transplanted into rats with Parkinson's disease significantly improved behavior and increased striatal dopamine content. In the present study, we transplanted tyrosine hydroxylase and neurturin gene-modified bone marrow-derived mesenchymal stem cells into the damaged striatum of Parkinson's disease model rats. Several weeks after cell transplantation, in addition to an improvement of motor function tyrosine hydroxylase and neurturin proteins were up-regulated in the injured striatum, and importantly, levels of dopamine and its metabolite 3,4-dihydroxyphenylacetic acid increased significantly. Furthermore, the density of the D2 dopamine receptor in the postsynaptic membranes of dopaminergic neurons was decreased. These results indicate that transplantation of tyrosine hydroxylase and neurturin gene-modified bone marrow-derived mesenchymal stem cells increases dopamine synthesis and significantly improves the behavior of rats with Parkinson's disease.
基金supported by the Fundamental Research Funds for the Central Universities, No. lzujbky-2011-83Project of the International Cooperation and Communion Department of Chinese Education Ministry (46th batch)the Science Foundation of Key Laboratory of Preclinical Study for New Drugs of Gansu Province, No. GSKFKT-0804
文摘Because neurons are susceptible to oxidative damage and thioredoxin reductase 1 is extensively distributed in the central nervous system and has antioxidant properties, we speculated that the enzyme may be involved in the pathogenesis of Parkinson's disease. A Parkinson's disease model was produced by intraperitoneal injection of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine into C57BL/6 mice. Real-time reverse transcription-PCR, western blot analysis and colorimetric assay showed that the levels of thioredoxin reductase 1 mRNA and protein were decreased, along with a significant reduction in thioredoxin reductase activity, in the midbrain of Parkinson's disease mice compared with normal mice. Immunohistochemical staining revealed that the number of thioredoxin reductase 1-positive neurons in the substantia nigra pars compacta of Parkinson's disease mice was significantly decreased compared with normal mice. These experimental findings suggest that the expression of thioredoxin reductase 1 in the substantia nigra pars compacta of Parkinson's disease mice is significantly decreased, and that the enzyme may be associated with disease onset.
文摘Studies have shown that estrogen has neuroprotective effects on the nigrostriatal system. The present study established a Parkinson's disease model in C57BL/6 mice by intraperitoneal injection of 1-methyl-4-phenyl-1,2,3,6-tetrapyridine. The mice were subjected to 1713 estradiol injection into the lateral ventricle. Immunofluorescence double staining showed that estrogen increased tyrosine hydroxylase and calbindin-D28K expression and co-expression in dopaminergic neurons of midbrain substantia nigra pars compacta of model mice. Behavior experiments showed that estrogen improved swimming and hanging behaviors in this mouse model of Parkinson's disease.
文摘In this study, rat models of Parkinson's disease induced by substantia nigra injection of 6-hydroxy-dopamine were intragastrically administered Zhichan powder daily for 50 days. Reverse transcription PCR results showed that tyrosine hydroxylase mRNA expression in the rat substantia nigra was significantly increased, while monoamine oxidase B mRNA expression was significantly decreased in the Zhichan powder group, compared with the model group. In addition, the levels of striatal dopamine and homovanillic acid, the ratio of dopamine to homovanillic acid, and the activity of blood superoxide dismutase were all higher in the Zhichan powder group than in the model group but the content of malondialdehyde in blood was lower. Our experimental findings indicate that Zhichan powder has an antioxidant effect, it can regulate the expression of monoamine oxidase B and tyrosine hydroxylase in the substantia nigra of Parkinson's disease rats, and it can facilitate the secretion of striatal dopamine and its metabolite homovanillic acid.