In Wireless Sensor Networks(WSN),attacks mostly aim in limiting or eliminating the capability of the network to do its normal function.Detecting this misbehaviour is a demanding issue.And so far the prevailing researc...In Wireless Sensor Networks(WSN),attacks mostly aim in limiting or eliminating the capability of the network to do its normal function.Detecting this misbehaviour is a demanding issue.And so far the prevailing research methods show poor performance.AQN3 centred efficient Intrusion Detection Systems(IDS)is proposed in WSN to ameliorate the performance.The proposed system encompasses Data Gathering(DG)in WSN as well as Intrusion Detection(ID)phases.In DG,the Sensor Nodes(SN)is formed as clusters in the WSN and the Distance-based Fruit Fly Fuzzy c-means(DFFF)algorithm chooses the Cluster Head(CH).Then,the data is amassed by the discovered path.Next,it is tested with the trained IDS.The IDS encompasses‘3’steps:pre-processing,matrix reduction,and classification.In pre-processing,the data is organized in a clear format.Then,attributes are presented on the matrix format and the ELDA(entropybased linear discriminant analysis)lessens the matrix values.Next,the output as of the matrix reduction is inputted to the QN3 classifier,which classifies the denial-of-services(DoS),Remotes to Local(R2L),Users to Root(U2R),and probes into attacked or Normal data.In an experimental estimation,the proposed algorithm’s performance is contrasted with the prevailing algorithms.The proposed work attains an enhanced outcome than the prevailing methods.展开更多
Intrusion Detection Systems (IDS) are pivotal in safeguarding computer networks from malicious activities. This study presents a novel approach by proposing a Hybrid Dense Neural Network-Radial Basis Function Neural N...Intrusion Detection Systems (IDS) are pivotal in safeguarding computer networks from malicious activities. This study presents a novel approach by proposing a Hybrid Dense Neural Network-Radial Basis Function Neural Network (DNN-RBFNN) architecture to enhance the accuracy and efficiency of IDS. The hybrid model synergizes the strengths of both dense learning and radial basis function networks, aiming to address the limitations of traditional IDS techniques in classifying packets that could result in Remote-to-local (R2L), Denial of Service (Dos), and User-to-root (U2R) intrusions.展开更多
文摘In Wireless Sensor Networks(WSN),attacks mostly aim in limiting or eliminating the capability of the network to do its normal function.Detecting this misbehaviour is a demanding issue.And so far the prevailing research methods show poor performance.AQN3 centred efficient Intrusion Detection Systems(IDS)is proposed in WSN to ameliorate the performance.The proposed system encompasses Data Gathering(DG)in WSN as well as Intrusion Detection(ID)phases.In DG,the Sensor Nodes(SN)is formed as clusters in the WSN and the Distance-based Fruit Fly Fuzzy c-means(DFFF)algorithm chooses the Cluster Head(CH).Then,the data is amassed by the discovered path.Next,it is tested with the trained IDS.The IDS encompasses‘3’steps:pre-processing,matrix reduction,and classification.In pre-processing,the data is organized in a clear format.Then,attributes are presented on the matrix format and the ELDA(entropybased linear discriminant analysis)lessens the matrix values.Next,the output as of the matrix reduction is inputted to the QN3 classifier,which classifies the denial-of-services(DoS),Remotes to Local(R2L),Users to Root(U2R),and probes into attacked or Normal data.In an experimental estimation,the proposed algorithm’s performance is contrasted with the prevailing algorithms.The proposed work attains an enhanced outcome than the prevailing methods.
文摘Intrusion Detection Systems (IDS) are pivotal in safeguarding computer networks from malicious activities. This study presents a novel approach by proposing a Hybrid Dense Neural Network-Radial Basis Function Neural Network (DNN-RBFNN) architecture to enhance the accuracy and efficiency of IDS. The hybrid model synergizes the strengths of both dense learning and radial basis function networks, aiming to address the limitations of traditional IDS techniques in classifying packets that could result in Remote-to-local (R2L), Denial of Service (Dos), and User-to-root (U2R) intrusions.