Geochemistry, zircon U–Pb geochronology, and Hf isotope data for the Early Paleozoic granites in the Baoshan Block reveal the Early Paleozoic tectonic evolution of the Proto-Tethys. The samples are high-K, calcalkali...Geochemistry, zircon U–Pb geochronology, and Hf isotope data for the Early Paleozoic granites in the Baoshan Block reveal the Early Paleozoic tectonic evolution of the Proto-Tethys. The samples are high-K, calcalkaline, strongly peraluminous rocks with A/CNK values of 1.37–1.46, are enriched in SiO2, K2O, and Rb, and are depleted in Nb, P, Ti, Eu, and heavy rare earth elements,which indicates the crystallization fractionation of the granitic magma. Zircon U–Pb dating indicates that they formed in ca. 480 Ma. The Nansa granites have εHf(t) values ranging from-16.04 to 4.36 with corresponding TC DMages of 2.10–0.81 Ga, which suggests the magmas derived from the partial melting of ancient metasedimentary with minor involvement of mantle-derived components. A synthesis of data for the Early Paleozoic igneous rocks in the Baoshan block and adjacent(Tengchong,Qiangtang, Sibumasu, Himalaya, etc.) blocks indicates that these blocks were all aligned along the proto-Tethyan margin of East Gondwana in the Early Paleozoic. The Early Paleozoic S-type granites from Nansa were generated in a high-temperature and low-pressure(HTLP) extensional tectonic setting, which resulted from Andean-type orogeny instead of the final assembly of Gondwana or crustal extension in a non-arc environment. In certain places, an expanding environment may exist in opposition to the tectonic backdrop of the lithosphere’s thickening and shortening, leading the crust to melt and decompress,mantle-derived materials to mix, and a small quantity of peraluminous granite to emerge.展开更多
Studies in the northern South China Sea(SCS)basement remain important for understanding the evolution of the Southeast Asian continental margin.Due to a thick cover of sediments and scarce borehole penetration,little ...Studies in the northern South China Sea(SCS)basement remain important for understanding the evolution of the Southeast Asian continental margin.Due to a thick cover of sediments and scarce borehole penetration,little is known about the age and tectonic affinity of this basement.In this study,an integrated study of zircon U-Pb geochronology,Hf isotopes,and whole-rock major and trace elements on seven basement granitoids from seven boreholes of Qiongdongnan Basin has been carried out.New zircon U-Pb results for these granitoids present middle-late Permian((270.0±1.2)Ma;(253±3.4)Ma),middle to late Triassic((246.2±3.4)Ma;(239.3±0.96)Ma;(237.9±0.99)Ma;(228.9±1.0)Ma)and Late Cretaceous ages((120.6±0.6)Ma).New data from this study,in combination with the previous dataset,indicates that granitoid ages in northern SCS basement vary from 270 Ma to 70.5 Ma,with three age groups of 270–196 Ma,162–142 Ma,and 137–71 Ma,respectively.Except for the late Paleozoic-Mesozoic rocks in the basement of the northern SCS,a few old zircon grains with the age of(2708.1±17)Ma to(2166.6±19)Ma provide clues to the existence of the pre-Proterozoic components.The geochemical signatures indicate that the middle Permian-early Cretaceous granitoids from the Qiongdongnan Basin are I-type granites formed in a volcanic arc environment,which were probably related to the subduction of the Paleo-Pacific Plate.展开更多
The Indosinian post-collisional Wulong pluton intruded into the Mesoproterozoic Fuping Group, South Qinling, central China. In the southern part of the pluton, some mafic enclaves have sharp or gradational contact rel...The Indosinian post-collisional Wulong pluton intruded into the Mesoproterozoic Fuping Group, South Qinling, central China. In the southern part of the pluton, some mafic enclaves have sharp or gradational contact relationships with the host biotite granodiorite. Geochemistry, zircon LA-ICP MS (laser ablation inductively-coupled plasma mass spectrometry) U-Pb chronology and Sr- Nd-Pb isotope geochemistry of the pluton are reported in this paper. The biotite granodiorite shows close compositional similarities to high-silica adakite. Its chondrite-normalized REE patterns are characterized by strong HREE depletion (Yb = 0.33--0.96 10-6 and Y = 4.77-11.19 ×10^-6), enrichment of Ba (775-1386 x 10-6) and Sr (643-1115 × 10^-6) and high Sr/Y (57.83-159.99) and Y/Yb (10.99-14.32) ratios, as well as insignificant Eu anomalies (6Eu = 0.70-0.83), suggesting a feldspar-poor, garnet±amphibole-rich residual mineral assemblage. The mafic enclaves have higher MgO (4.15- 8.13%), Cr (14.79-371.31 × 10-6), Ni (20.00-224.24× 10^-6) and Nb/Ta (15.42-21.91) than the host granodiorite, implying that they are mantle-derived and might represent underplated mafic magma. Zircon LA-ICP MS dating of the granodiorite yields a ^206pb/^238U weighted mean age of 208±2 Ma (MSWD=0.50, 1σ), which is the age of emplacement of the host biotite granodiorite. This age indicates that the Wulong pluton formed during the late-orogenic or post-collisional stage (〈242±21 Ma) of the South Qinling belt. The host biotite granodiorite displays ^87Sr/^86Sr = 0.7059-0.7062, Isr = 0.7044-- 0.7050,^143Nd/^144Nd = 0.51236-0.51238, εNd(t)= -2.26 to -2.66 to ^206Pb/^204pb = 18.099-18.209, ^207pb/^204pb = 15.873-15.979 and ^208pb/^204pb = 38.973-39.430. Those ratios are similar to those of the Mesoproterozoic Yaolinghe Group in the South Qinling. Furthermore, its Nd isotopic model age (-1.02 Ga) is consistent with the age (-1.1 Ga) of the Yaolinghe Group. Based on the integrated geological and geochemical studies, coupled with previous studies, the authors suggest that the Wulong adakitic biotite granodiorite was probably generated by dehydration melting of the Yaolinghe Group-like thickened mafic crust, triggered by underplating of mafic magma at the boundary of the thickened mafic crust and hot lithospheric mantle, and that the Wulong adakitic biotite granodiorite may have resulted from thinning and delamination of the lower crust or breakoff of the subducting slab of the Mianlue ocean during the Indosinian post-collisional orogenic stage of the Qinling orogenic belt.展开更多
The U-Pb isotope geochemical study of the pyroxenite-gabbro intrusion in the Dabie Mountains shows that the post-collisional mafic-ultramafic rocks of the Dabie Mountains are char-acterized by relative high Pb content...The U-Pb isotope geochemical study of the pyroxenite-gabbro intrusion in the Dabie Mountains shows that the post-collisional mafic-ultramafic rocks of the Dabie Mountains are char-acterized by relative high Pb contents, low U contents and low U/Pb ratios. These characters may be results of interaction between lithosphere or depleted asthenospheric mantle (DMM) and lower crust, but have nothing to do with mantle plume and subducted continental crust. It was first ob-served that some samples with lower 206Pb/204Pb and higher 207Pb/204Pb ratios show typical char-acters of the LOMU component. The Pb, Sr, and Nd isotopic tracing shows that three components are needed in the source of the Zhujiapu pyroxenite-gabbro intrusion. They could be old enriched sub-continental lithospheric mantle (LOMU component), lower crust and depleted asthenospheric mantle. The crust-mantle interaction process producing primitive magma of post-collisional ma-fic-ultramafic rocks in the Dabie Mountains could be described by a lithospheric delamination and magma underplating model. After continent-continent collision, delamination of the thickened lithosphere induced the upwelling of depleted asthenospheric mantle, which caused partial melting of asthenospheric mantle and residual sub-continental lithospheric mantle. The basaltic magma produced in this process underplated in the boundary between the crust and mantle and interacted with lower crust resulting in the geochemical characters of both enriched lithospheric mantle and lower crust.展开更多
The Zhalaxiageyong lead-zinc-copper polymetallic deposit is a typical porphyry deposit of the Tuotuohe area. Whole-rock geochemical analyses,Zircon U-Pb dating and Hf isotope analysis are undertaken for the ore host t...The Zhalaxiageyong lead-zinc-copper polymetallic deposit is a typical porphyry deposit of the Tuotuohe area. Whole-rock geochemical analyses,Zircon U-Pb dating and Hf isotope analysis are undertaken for the ore host trachydacite with the aim of constraining its petrogenesis,magma source and regional tectonic setting.LA-ICP-MS zircon U-Pb dating indicates that the trachydacite was formed in 32. 68 ± 0. 50 Ma( MSWD =1. 6),i. e.,Oligocene. The trachydacite is rich in potassium and poor in Mg#( 5. 10-9. 70),belonging to the peraluminous shoshonite series. The rocks are enriched in LILE( large ion lithophile elements) Rb,Ba,K and LREE,depleted in HFSE( high field strength elements) Nb,Ta,P,Ti,with high Sr and low Y and Yb,having the characteristics of the C type adakite. It is calculated that the initial εHf( t) of the zircons range from-0. 92 to 2. 07 and their two-stage Hf model ages T_(DM2) range from 978 Ma to 1 169 Ma. The magma source should be mainly the partially melt mafic rocks of the thickened Middle Neoproterozoic lower crust of the Northern Qiangtang massif with the addition of ancient aluminosilica material in the melting process. The rocks formed in the tectonic setting of delamination of lithosphere and extension of the thickened crust. During the period of 40-32 Ma,large-scale potassium rich alkaline magmatism occurred in this area. The porphyry metallogenesis is related to the magmatic activities in this period.展开更多
Objective The Late Cretaceous Xiuwacu ore-bearing porphyry is located in the Geza area of southern Yidun arc, SW China. In this area, the rock mass is mainly composed of three lithofacies: biotite granite porphyry, ...Objective The Late Cretaceous Xiuwacu ore-bearing porphyry is located in the Geza area of southern Yidun arc, SW China. In this area, the rock mass is mainly composed of three lithofacies: biotite granite porphyry, monzonitic granite and light alkali feldspar granite. As a part of the Yidun arc, the Geza arc has common structure and temporal- spatial evolution with the ~idun arc, which has experienced three stages of oceanic crust subduction, collision orogeny and intracontinent convergence stages. The molybdenite ores in the area are mainly hosted in monzonitic granite-porphyry and structural fracture zone, and the ore bodies are strictly controlled by faults. In recent years, great geological prospecting results have been achieved in Xiuwacu, and the deposit has reached a medium scale. However, there are few researches on the metallogenic porphyry. Based on the previous research, we determined the rock-forming and ore-forming age of the porphyry, and found that there were two stages of magmatism intrusion in Xiuwacu: Indosinian and Yanshanian. We also discussed the geochemical characteristics and source area of the rocks in the area.展开更多
Deep-seated potassium-rich brines were identified in the Jiangling Basin,South China.Although magmatichydrothermal sources have been proposed,the relationship between brine-type potash mineralization and volcanism rem...Deep-seated potassium-rich brines were identified in the Jiangling Basin,South China.Although magmatichydrothermal sources have been proposed,the relationship between brine-type potash mineralization and volcanism remains unclear.In this study,U-Pb geochronology,geochemistry,fluid inclusion and C-O isotopic compositions of hydrothermal vein minerals in the Jiangling Basin are examined.Laser ablation U-Pb dating of calcite veins indicates that the ages are slightly younger than the formation age of the Balingshan basalt.Fluid inclusions in hydrothermal minerals show medium–low homogenization temperatures(160–220℃)and low salinities(0.14 to 4.9 wt%NaCl eqv.)and densities(0.882–0.944 g/cm^(3)).The liquid compositions of fluid inclusions in calcite veins from sedimentary strata have higher contents of potassium,compared with those from basalt.The coupled negativeδ^(13)CPDB(-10.3‰to-8.0‰)and positiveδ^(18)OSMOW(17.4‰to 20.7‰)values imply that calcite precipitation resulted from CO_(2)degassing of the basaltic magmatic fluids,as indicated by the gas composition of these inclusions in hydrothermal minerals.Rare earth element patterns indicate that water-rock interaction between hydrothermal fluids and sedimentary wall rocks contributed to the calcite precipitation in sedimentary strata.It is proposed that high-temperature water-rock interaction between magmatic fluids and sedimentary strata resulted in the potassium enrichment in fluids,interpreted as one of the sources of potassium-rich brines in the Jiangling Basin.展开更多
We report the oxide,element geochemistry and Nd isotopic geochemical data of apatite in the middle Pleistocene medium-and fine-grained trachyte in the Tianchi volcanic area(TVA)of Changbai Mountain,discussing the rela...We report the oxide,element geochemistry and Nd isotopic geochemical data of apatite in the middle Pleistocene medium-and fine-grained trachyte in the Tianchi volcanic area(TVA)of Changbai Mountain,discussing the relationship between apatite and the composition of the whole rock.The purpose is to use the apatite geochemical data to constrain the evolutionary process of trachytic magma and the petrogenesis of trachyte in the cone-forming period of the Tianchi volcano.Apatite(Ca_(5)(PO_(4))_(3)(OH,F,Cl))is a common accessory mineral that occurs widely in volcanic rocks in the TVA.The apatites in the trachyte are mainly subhedral-anhedral,having the characteristics of magmatic apatite.In terms of oxide and element geochemistry,they have homogeneous Al_(2)O_(3),SiO_(2),MgO,P_(2)O_(5),K_(2)O,CaO and heterogeneous TiO2,with high F content.They are generally enriched in Th,U and LREEs,depleted in Nb,Ta,Zr,Hf and HFSEs,showing negative Ba,Sr and Ti anomalies,similar to those of the whole-rock host trachytes.The ratios of high(La/Yb)_(N),low δEu(Eu/Eu*),Sr/Y value and ΣREE content in apatite,and the F,Sr,Y,Th/U,La/Sm,and Nd/Tb with ΣREE andδEu anomalies showed a linear correlation,all of those indicating that the host magma has the characteristic of high differentiation.The apatite grains generally having ^(147)Sm/^(144)Nd,^(143)Nd/^(144)Nd ratios and ε_(Nd)(t)values of 0.1072-0.1195,0.5123-0.5126 and -3.49 to -0.10,respectively,are similiar to those of the host rock.The Nd model ages TDM1 are 949-803 Ma in apatite.Combined with theεNd(t)value of the apatite core(-7.06 to-3.49),we conclude that the initial magma of the host trachyte was derived from the partial melting of Proterozoic crustal material and there was an assimilation of wall rocks during its evolution.展开更多
The Merguechoum fluorite-barite mineralization,located in the Eastern Meseta of Morocco,is hosted in the Late Hercynian granite.The ore consists of fine crystals of fluorite 1,massive barite 1,euhedral crystals of flu...The Merguechoum fluorite-barite mineralization,located in the Eastern Meseta of Morocco,is hosted in the Late Hercynian granite.The ore consists of fine crystals of fluorite 1,massive barite 1,euhedral crystals of fluorite 2,and barite 2 with calcite and minor quartz and sulfides.The Merguechoum ore deposits have never been investigated.This study was the first contribution that studied the genesis of fluorite and barite.The ore occurs as dissemination within granite intrusion and also fills the NE-SWtrending meter-sized fractures and faults.The values of the total Rare Earth Elements and Yttrium(REY)and the ratios of LREY/HREY,Y/Ho,Tb/Ca,and Tb/La indicate that the Merguechoum fluorite precipitated from hydrothermal fluids,likely basinal brines,which interacted with the Hercynian granite.The REY data indicate that the ore-forming fluids of the early stage have intensely interacted with the Hercynian granite compared to those of the late ore stage.The gradual decrease in the europium(Eu/Eu^(*)),yttrium(Y/Y^(*)),and cerium(Ce/Ce^(*))anomalies and a low concentration ofΣREY observed in the second ore stage compared to the first ore stage suggest an increase in p H and fO_(2)and by inference a decrease in temperature during the evolution of the hydrothermal system.This evolution could be explained by fluid mixing between the ascending basinal hydrothermal fluids and the diluted sulfate-rich meteoric water barite separates from selected samples reveal that the dissolved sulfates(SO_(4)^(2-))were derived from Permian–Triassic sulfates and/or coeval poreseawater sulfates.The proposed fluid mixing triggered the precipitation of an early-stage F-Ba assemblage followed by the second-stage F-Ba mineralization.Geologic fieldwork,REY inventories,and isotope data point to the ore genesis during the Permian–Triassic extensional tectonic activity concerning the Pangea rifting.This extensional tectonic environment is likely the driving force that mobilized a large amount of the ore-forming basinal brines along the available faults and fractures to the loci of ore deposition.展开更多
The world-class Huize Pb-Zn deposits of Yunnan province,in southwestern China,located in the center of the Sichuan-Yunnan-Guizhou Pb-Zn polymetallic metallogenic province,has Pb+Zn reserves of more than 5 million ton...The world-class Huize Pb-Zn deposits of Yunnan province,in southwestern China,located in the center of the Sichuan-Yunnan-Guizhou Pb-Zn polymetallic metallogenic province,has Pb+Zn reserves of more than 5 million tons at Pb+Zn grade of higher than 25%and contains abundant associated metals,such as Ag,Ge,Cd,and Ga.The deposits are hosted in the Lower Carboniferous carbonate strata and the Permian Emeishan basalts which distributed in the northern and southwestern parts of the orefield.Calcite is the only gangue mineral in the primary ores of the deposits and can be classified into three types,namely lumpy,patch and vein calcites in accordance with their occurrence.There is not intercalated contact between calcite and ore minerals and among the three types of calcite,indicating that they are the same ore-forming age with different stages and its forming sequence is from lumpy to patch to vein calcites. This paper presents the rare earth element(REE) and C-O isotopic compositions of calcites in the Huize Pb-Zn deposits.From lumpy to patch to vein calcites,REE contents decrease as LREE/ HREE ratios increase.The chondrite-normalized REE patterns of the three types of calcites are characterized by LREE-rich shaped,in which the lumpy calcite shows(La)_N〈(Ce)_N〈(Pr)_N≈(Nd)_N with Eu/Eu~*〈1,the patch calcite has(La)_N〈(Ce)_N〈(Pr)_N≈(Nd)_N with Eu/Eu~*〉1,and the vein calcite displays(La)_N〉(Ce)_N〉(Pr)_N〉(Nd)_N with Eu/Eu~*〉1.The REE geochemistry of the three types of calcite is different from those of the strata of various age and Permian Emeishan basalt exposed in the orefield.Theδ^(13) C_(PDb) andδ^(18)O_(Smow) values of the three types of calcites vary from-3.5‰to-2.1‰and 16.7‰to 18.6‰,respectively,falling within a small field between primary mantle and marine carbonate in theδ^(13)C_(PDb) vsδ^(18)O_(Smow) diagram. Various lines of evidence demonstrate that the three types of calcites in the deposits are produced from the same source with different stages.The ore-forming fluids of the deposits resulted from crustal -mantle mixing processes,in which the mantle-derived fluid components might be formed from degassing of mantle or/and magmatism of the Permian Emeishan basalts,and the crustal fluid was mainly provided by carbonate strata in the orefield.The ore-forming fluids in the deposits were homogenized before mineralization,and the ore-forming environment varied from relatively reducing to oxidizing.展开更多
Mesozoic granitic intrusions are widely distributed in the Nanling region, South China. Yanshanian granites are closely connected with the formation of tungsten deposits. The Xihuashan granite is a typical representat...Mesozoic granitic intrusions are widely distributed in the Nanling region, South China. Yanshanian granites are closely connected with the formation of tungsten deposits. The Xihuashan granite is a typical representative of tungsten-bearing granite. The Xihuashan granite consists mainly of medium-grained porphyritic biotite granite, medium-grained biotite granite and fine-grained twomica granite, which correspond to LA-ICP-MS zircon U-Pb ages of 555.5±0.4 Ma, 553.0±0.6 Ma and 552.8±0.9 Ma, respectively. Rocks from the Xihuashan mining area displays high SlOe (73.85% to 76.49%) and NaeO+K20 contents (8.09% to 9.43%), belonging to high-K calc-alkaline series. They are metaluminous to weakly peraluminous with A/CNK values ranging from 0.96 to 5.06. All granites in this study area are rich in Rb, Th, U and Pb, and depleted in Ba, Sr, P, Ti, Nb and Eu, especially depleted in medium-grained biotite granite and fine-grained two-mica granite. The medium-grained porphyritic biotite granites usually have high LREE concentrations, whereas medium-grained biotite granite and fine-grained two-mica granite displays high HREE contents. Our geochemical data reveal that the studied rocks are highly fractionated I-type granite. The magma underwent strong magma differentiation with decreasing temperature and increasing oxygen fugacity, which may explain the formation of three types of distinct granites. Variations of Rb, Sr and Ba concentrations in different type granites were controlled by fractional crystallization of biotite and feldspar. Fractional crystallization of monazite, allanite and apatite resulted in LREE changes in granite, and formation of garnet mainly caused HREE changes. Granites from the Xihuashan mining area have relatively high εd(t) values (-9.77 to -55.46), indicating that they were probably generated by partial melting of underlying Proterozoic metasedimentary rocks with minor addition of juvenile crust or mantlederived magmas.展开更多
The Jiang Tso ophiolite, situated in the middle segment of the Bangong- Nujiang Suture Zone, is a part of the easternmost Qieli Lake ophiolite subzone and is close to the south of Pung Lake ophiolite. The rock associa...The Jiang Tso ophiolite, situated in the middle segment of the Bangong- Nujiang Suture Zone, is a part of the easternmost Qieli Lake ophiolite subzone and is close to the south of Pung Lake ophiolite. The rock association of Jiang Tso ophiolite is relatively complete and is mainly composed of metamorphic peridotite, gabbro and diabase. Comparing with N-MORB, the ophiolite is high in Mg and low in Ti, K, Na, P, and is depleted in Nb, Ta, Hf, Th and enriched in Rb, Sr and Ba. Geochemical characteristics of the Jiang Tso ophiolite indicate it is of a supra-subduction zone type formed in the spreading ridge of back arc basin. The SHRIMP U-Pb dating of zircons from the gabbro yielded a weighted average age of 188.1±4.1 Ma (MSWD=1.4), indicating the Jiang Tso ophiolite was formed in the late stage of early Jurassic. The Sr, Nd isotopic compositions show that the Tethyan mantle domain is the depleted mantle (DM), with enriched mantle domain II (EMII). They have the same Sr, Nd isotopic composition with the India Ocean MORB type.展开更多
The Tuolugou cobalt deposit is the first independent large-scale Co- and Au-bearing deposit discovered in northwestern China. It is located in the eastern Kunlun orogenic belt in Qinghai Province, and occurs conformab...The Tuolugou cobalt deposit is the first independent large-scale Co- and Au-bearing deposit discovered in northwestern China. It is located in the eastern Kunlun orogenic belt in Qinghai Province, and occurs conformably in low-grade metamorphic volcano-sedimentary rock series with well-developed Na-rich hydrothermal sedimentary rocks and typical hydrothermal sedimentary ore fabrics. Fluid inclusions and isotopic geochemistry studies suggest that cobalt mineralizing fluid is dominated by NaCI-H20 system, accompanied by NaCI-CO2-H20-N2 system responsible for gold mineralization. Massive, banded and disseminated pyrite ores have similar compositions of He and Ar isotopes from the mineralizing fluid, with 3He/4He range between 0.10 to 0.31Ra (averaging 0.21Ra), and 4~Ar/36Ar between 302 and 569 (averaging 373), which reflects that Co mineralizing fluids derived dominantly from meteoric water deeply circulating. ~34S values of pyrite approaches to zero (~34S ranging from -4.5%o to +1.5%o, centering around -1.8%o to -0.2%o), reflecting its deep source. Ore lead is characterized by distinctly high radiogenesis, with 2~6pb/2~4pb〉19.279, 2~7pb/2~4pb〉15.691 and 2~spb/2~4pb〉39.627, and its values show an increase trend from country rocks, regional Paleozoic volcanic rocks to ores. This may have suggested that high radiogentic ore Pb derived mainly from country rocks by leaching meteoric water-dominated hydrothermal fluid during its circulation at depth. Cobalt occurs mainly in sulfide phase (such as pyrite), but cobalt enrichment, and presence and increasing contents of Co-bearing minerals have a positive correlation with metamorphic degree. The Tuolugou deposit and other typical strata-bound Co-Cu-Au deposits have striking similarities in the geological features and metallogenic pattern of primary cobalt. All of them are syngenetic hydrothermal exhalative sedimentation in origin.展开更多
According to the age measurements of single zircon evaporation method, combined with the study of Nd isotopic geochemistry in Tongbai area, the protolith age of basic granulites is about 1 010 Ma; the protolith ag...According to the age measurements of single zircon evaporation method, combined with the study of Nd isotopic geochemistry in Tongbai area, the protolith age of basic granulites is about 1 010 Ma; the protolith age of intermediate acid granulites is probably more than 904 Ma, which is close to the age of the basic granulites. The basic granulites would be the nature occurrence of basic magma underplating beneath the base of lower crust in the North Qinling crustal vertical growth event at about 1 000 Ma. However, the intermediate acid granulites were the result of the mixing fusion between the lower crust material and the underplating basic magma, which shows a strong crust mantle interaction. The 470-480 Ma are the peak metamorphic ages of the basic and intermediate acid granulites, which related to the crust bi direction shortening and crust thickening due to the Erlangping back arc basin southward subduction and the paleo Qinling oceanic plate northward subduction.展开更多
Mesozoic bimodal volcanic rocks of basaltic andesite and rhyolite are widely distributed in the Da Hinggan Range, but their petrogenetic relationships and geodynamic implications are rarely constrained. Detailed studi...Mesozoic bimodal volcanic rocks of basaltic andesite and rhyolite are widely distributed in the Da Hinggan Range, but their petrogenetic relationships and geodynamic implications are rarely constrained. Detailed studies on doleritic and porphyry dikes in the Zhalantun area indicate that they display features of magma mixing, suggesting their coeval formation. In situ zircon U-Pb dating shows that the porphyry was emplaced in the Early Cretaceous with a ^206Pb/^238U age of 130±1 Ma. Zircons from the dolerite also yield an Early Cretaceous emplacement age of 124±2 Ma although some inherited zircons have been identified. These age results indicate that the Early Cretaceous was an important period of magmatism in the Da Hinggan Range. Zircons from porphyry are characterized by positive value of εHf(t) as high as 10.3±0.5 with Hf depleted mantle model age of 349-568 Ma, whereas magmatic zircons from the dolerite have εHf(t) value of 11.0±1.4 with Hf depleted mantel model age of 342-657 Ma, consistent with those from the porphyry. Considering other data on the geological evolution of this area, it is concluded that the mafic magma originated from the partial melting of Paleozoic enriched lithospheric mantle, whereas the felsic magma came from recycling of juvenile crust formed during the Paleozoic. Both of the protoliths are closely related to the subduction of the Paleo-Asian Ocean during the Paleozoic, indicating that the Paleozoic is an important period of large-scale crustal growth in the area.展开更多
In this paper we report geochemical and Nd-Sr isotopic data for a late Archean gneissic granitic pluton (Hengling pluton), an early Paleoproterozoic complex (Xipan complex) and a late Paleoproterozoic granitic plu...In this paper we report geochemical and Nd-Sr isotopic data for a late Archean gneissic granitic pluton (Hengling pluton), an early Paleoproterozoic complex (Xipan complex) and a late Paleoproterozoic granitic pluton (Yunzhongshan granites) from the Liiliang-Wutai terrain, North China, to trace the source of these late Archean-Paleoproterozoic granitoids and, particularly, to understand the nature and mechanism of continental growth at that time. The Hengling granitic gneisses (ca. 2.51 Ga) are characterized by high Na2O and LILEs, TTG-like REE patterns (highly depleted HREE and minor Eu anomalies) and moderately depleted Nd-Sr isotopic compositions (εNd(t) =1.2-2.7, ISr=0.7015-0.7019), and were considered as being products of arc magmatism that was developed upon the North China craton. The Xipan complex (ca. 2.2 Ga) contain gabbroic diorite and monzonite, mostly being Na2O-rich, highly fractionated REE patterns and isotopically enriched (εNd(t) =-1.5 to -4.1, Isr=0.7038-0.706). The gabbroic diorites probably originated from melting of an enriched mantle source, but significantly contaminated by lower crustal material, and the monzonites probably represent a product of a mixture between the gabbroic dioritic magma and granitic melts of crustal origin. The Yunzhongshan post-collisional granitoids (ca. 1.8 Ga) are characterized by high-K affinity and highly-enriched and homogeneous Nd isotopic compositions (εNd(t)=-4.9 to -5.7), although they split into two groups in terms of REE patterns: one group showing elevated HREE (and Sc, Y and Zr) with significant negative Eu anomalies and the other showing highly depleted HREE and, to a lesser extent, mid-REE with negligible Eu anomalies. These granites are genetically related to a process of extensional collapse of a thickened orogen. They formed through magma mixing between mantle-derived basaltic magmas and crust-derived granitic melts, followed by significant fractionation of ferromagnesian phases (like hornblende and Cpx) and feldspar and accessory zircons. Some Yunzhongshan granites show very old Nd model ages (2.9-3.0 Ga), suggesting the existence of continental crust older than 2.7 Ga, which is supported by our zircon Hf isotopic data for these granites.展开更多
The Kejie pluton is located in the north of the Changning-Menglian suture zone. The rock types are mainly biotite-granite. Zircon LA-ICP-MS U-Pb dating indicates that the Kejie pluton emplaced at about 80-77 Ma, Late ...The Kejie pluton is located in the north of the Changning-Menglian suture zone. The rock types are mainly biotite-granite. Zircon LA-ICP-MS U-Pb dating indicates that the Kejie pluton emplaced at about 80-77 Ma, Late Cretaceous. The Kejie pluton samples are characterized by high SiO2 (71.68%-72.47%), K2O (4.73%-5.54%), total alkali (K2O + Na2O = 8.21%-8.53%), K2O/Na2O ratios (1.36-1.94) and low P2O5 (0.13%-0.17%), with A/CNK of 1.025-1.055; enriched in U, Th, and K, depleted in Ba, Nb, St, Ti, P and Eu. They are highly fractionated, slightly peraluminous 1-type granite. The two samples of the Kejie pluton give a large variation of εHf(t) values (-5.04 to 1.96) and Hf isotope crustal model ages of 1.16-1.5 Ga. Zircon Hf isotopes and zircon saturation temperatures of whole-rock (801℃-823℃) show that the mantle-derived materials maybe have played a vital role in the generation of the Kejie pluton. The Kejie pluton was most likely generated in a setting associated with the eastward subduction of the neo-Tethys ocean, where intrusion of mantle wedge basaltic magmas in the crust caused the anatexis of the latter, forming hybrid melts, which subsequently experienced high-degree fractional crystallization.展开更多
The Laocheng granitoid pluton is located in the South Qinling tectonic domain of the Qinling orogenic belt,southern Shaanxi Province,and consists chiefly of quartz diorite,granodiorite and monzogranite.A LA-ICP-MS zir...The Laocheng granitoid pluton is located in the South Qinling tectonic domain of the Qinling orogenic belt,southern Shaanxi Province,and consists chiefly of quartz diorite,granodiorite and monzogranite.A LA-ICP-MS zircon U-Pb isotopic dating,in conjunction with cathodoluminescence images,reveals that the quartz diorite and granodiorite were emplaced from 220 Ma to 216 Ma,while the monzogranite was emplaced at~210 Ma.In-situ zircon Hf isotopic analyses show that theε_(Hf)(t) values of the quartz diorite and granodiorite range from-8.1 to +1.3,and single-stage Hf model ages from 809 Ma to 1171 Ma,while theε_(Hf)(t)values of the monzogranite are-14.5 to +16.7 and single-stage Hf model ages from 189 Ma to 1424 Ma.These Hf isotopic features reveal that the quartz diorite, granodiorite and monzogranite were formed from the mixing of the magmas derived from partial melting of the depleted mantle and the lower continent crustal materials,and there were two stages of continental crust growth during the Neoproterozoic(~800 Ma)and Indosinian(~210 Ma)eras, respectively,in the south Qinling tectonic domain of the Qinling orogrnic belt,Central China.展开更多
基金funded by the National Natural Science Foundation of China (2019M653840XB)the National Natural Science Foundation of China (41972043 and 42062006)。
文摘Geochemistry, zircon U–Pb geochronology, and Hf isotope data for the Early Paleozoic granites in the Baoshan Block reveal the Early Paleozoic tectonic evolution of the Proto-Tethys. The samples are high-K, calcalkaline, strongly peraluminous rocks with A/CNK values of 1.37–1.46, are enriched in SiO2, K2O, and Rb, and are depleted in Nb, P, Ti, Eu, and heavy rare earth elements,which indicates the crystallization fractionation of the granitic magma. Zircon U–Pb dating indicates that they formed in ca. 480 Ma. The Nansa granites have εHf(t) values ranging from-16.04 to 4.36 with corresponding TC DMages of 2.10–0.81 Ga, which suggests the magmas derived from the partial melting of ancient metasedimentary with minor involvement of mantle-derived components. A synthesis of data for the Early Paleozoic igneous rocks in the Baoshan block and adjacent(Tengchong,Qiangtang, Sibumasu, Himalaya, etc.) blocks indicates that these blocks were all aligned along the proto-Tethyan margin of East Gondwana in the Early Paleozoic. The Early Paleozoic S-type granites from Nansa were generated in a high-temperature and low-pressure(HTLP) extensional tectonic setting, which resulted from Andean-type orogeny instead of the final assembly of Gondwana or crustal extension in a non-arc environment. In certain places, an expanding environment may exist in opposition to the tectonic backdrop of the lithosphere’s thickening and shortening, leading the crust to melt and decompress,mantle-derived materials to mix, and a small quantity of peraluminous granite to emerge.
基金The National Natural Science Foundation of China under contract No.42072181。
文摘Studies in the northern South China Sea(SCS)basement remain important for understanding the evolution of the Southeast Asian continental margin.Due to a thick cover of sediments and scarce borehole penetration,little is known about the age and tectonic affinity of this basement.In this study,an integrated study of zircon U-Pb geochronology,Hf isotopes,and whole-rock major and trace elements on seven basement granitoids from seven boreholes of Qiongdongnan Basin has been carried out.New zircon U-Pb results for these granitoids present middle-late Permian((270.0±1.2)Ma;(253±3.4)Ma),middle to late Triassic((246.2±3.4)Ma;(239.3±0.96)Ma;(237.9±0.99)Ma;(228.9±1.0)Ma)and Late Cretaceous ages((120.6±0.6)Ma).New data from this study,in combination with the previous dataset,indicates that granitoid ages in northern SCS basement vary from 270 Ma to 70.5 Ma,with three age groups of 270–196 Ma,162–142 Ma,and 137–71 Ma,respectively.Except for the late Paleozoic-Mesozoic rocks in the basement of the northern SCS,a few old zircon grains with the age of(2708.1±17)Ma to(2166.6±19)Ma provide clues to the existence of the pre-Proterozoic components.The geochemical signatures indicate that the middle Permian-early Cretaceous granitoids from the Qiongdongnan Basin are I-type granites formed in a volcanic arc environment,which were probably related to the subduction of the Paleo-Pacific Plate.
文摘The Indosinian post-collisional Wulong pluton intruded into the Mesoproterozoic Fuping Group, South Qinling, central China. In the southern part of the pluton, some mafic enclaves have sharp or gradational contact relationships with the host biotite granodiorite. Geochemistry, zircon LA-ICP MS (laser ablation inductively-coupled plasma mass spectrometry) U-Pb chronology and Sr- Nd-Pb isotope geochemistry of the pluton are reported in this paper. The biotite granodiorite shows close compositional similarities to high-silica adakite. Its chondrite-normalized REE patterns are characterized by strong HREE depletion (Yb = 0.33--0.96 10-6 and Y = 4.77-11.19 ×10^-6), enrichment of Ba (775-1386 x 10-6) and Sr (643-1115 × 10^-6) and high Sr/Y (57.83-159.99) and Y/Yb (10.99-14.32) ratios, as well as insignificant Eu anomalies (6Eu = 0.70-0.83), suggesting a feldspar-poor, garnet±amphibole-rich residual mineral assemblage. The mafic enclaves have higher MgO (4.15- 8.13%), Cr (14.79-371.31 × 10-6), Ni (20.00-224.24× 10^-6) and Nb/Ta (15.42-21.91) than the host granodiorite, implying that they are mantle-derived and might represent underplated mafic magma. Zircon LA-ICP MS dating of the granodiorite yields a ^206pb/^238U weighted mean age of 208±2 Ma (MSWD=0.50, 1σ), which is the age of emplacement of the host biotite granodiorite. This age indicates that the Wulong pluton formed during the late-orogenic or post-collisional stage (〈242±21 Ma) of the South Qinling belt. The host biotite granodiorite displays ^87Sr/^86Sr = 0.7059-0.7062, Isr = 0.7044-- 0.7050,^143Nd/^144Nd = 0.51236-0.51238, εNd(t)= -2.26 to -2.66 to ^206Pb/^204pb = 18.099-18.209, ^207pb/^204pb = 15.873-15.979 and ^208pb/^204pb = 38.973-39.430. Those ratios are similar to those of the Mesoproterozoic Yaolinghe Group in the South Qinling. Furthermore, its Nd isotopic model age (-1.02 Ga) is consistent with the age (-1.1 Ga) of the Yaolinghe Group. Based on the integrated geological and geochemical studies, coupled with previous studies, the authors suggest that the Wulong adakitic biotite granodiorite was probably generated by dehydration melting of the Yaolinghe Group-like thickened mafic crust, triggered by underplating of mafic magma at the boundary of the thickened mafic crust and hot lithospheric mantle, and that the Wulong adakitic biotite granodiorite may have resulted from thinning and delamination of the lower crust or breakoff of the subducting slab of the Mianlue ocean during the Indosinian post-collisional orogenic stage of the Qinling orogenic belt.
基金This research was supported by the National Natural Science Foundation of China(Grant No.49873006)Major State Basic Research Development Program(Grant No.1999075503)Chinese Academy of Sciences(Grant No.KZCXZ-107).
文摘The U-Pb isotope geochemical study of the pyroxenite-gabbro intrusion in the Dabie Mountains shows that the post-collisional mafic-ultramafic rocks of the Dabie Mountains are char-acterized by relative high Pb contents, low U contents and low U/Pb ratios. These characters may be results of interaction between lithosphere or depleted asthenospheric mantle (DMM) and lower crust, but have nothing to do with mantle plume and subducted continental crust. It was first ob-served that some samples with lower 206Pb/204Pb and higher 207Pb/204Pb ratios show typical char-acters of the LOMU component. The Pb, Sr, and Nd isotopic tracing shows that three components are needed in the source of the Zhujiapu pyroxenite-gabbro intrusion. They could be old enriched sub-continental lithospheric mantle (LOMU component), lower crust and depleted asthenospheric mantle. The crust-mantle interaction process producing primitive magma of post-collisional ma-fic-ultramafic rocks in the Dabie Mountains could be described by a lithospheric delamination and magma underplating model. After continent-continent collision, delamination of the thickened lithosphere induced the upwelling of depleted asthenospheric mantle, which caused partial melting of asthenospheric mantle and residual sub-continental lithospheric mantle. The basaltic magma produced in this process underplated in the boundary between the crust and mantle and interacted with lower crust resulting in the geochemical characters of both enriched lithospheric mantle and lower crust.
基金Supported by Project of China Geological Survey(No.12120114080901)
文摘The Zhalaxiageyong lead-zinc-copper polymetallic deposit is a typical porphyry deposit of the Tuotuohe area. Whole-rock geochemical analyses,Zircon U-Pb dating and Hf isotope analysis are undertaken for the ore host trachydacite with the aim of constraining its petrogenesis,magma source and regional tectonic setting.LA-ICP-MS zircon U-Pb dating indicates that the trachydacite was formed in 32. 68 ± 0. 50 Ma( MSWD =1. 6),i. e.,Oligocene. The trachydacite is rich in potassium and poor in Mg#( 5. 10-9. 70),belonging to the peraluminous shoshonite series. The rocks are enriched in LILE( large ion lithophile elements) Rb,Ba,K and LREE,depleted in HFSE( high field strength elements) Nb,Ta,P,Ti,with high Sr and low Y and Yb,having the characteristics of the C type adakite. It is calculated that the initial εHf( t) of the zircons range from-0. 92 to 2. 07 and their two-stage Hf model ages T_(DM2) range from 978 Ma to 1 169 Ma. The magma source should be mainly the partially melt mafic rocks of the thickened Middle Neoproterozoic lower crust of the Northern Qiangtang massif with the addition of ancient aluminosilica material in the melting process. The rocks formed in the tectonic setting of delamination of lithosphere and extension of the thickened crust. During the period of 40-32 Ma,large-scale potassium rich alkaline magmatism occurred in this area. The porphyry metallogenesis is related to the magmatic activities in this period.
基金financially supported by the National Natural Science Foundation of China(grant No.41502076)the Science Research Fund of Yunnan Provincial Education Department(grant No.2015Y066)+1 种基金the Provincial People Training Program of Kunming University of Science and Technology(grant No.KKSY201421042)the Project of China Geological Survey(grant No.12120114013701)
文摘Objective The Late Cretaceous Xiuwacu ore-bearing porphyry is located in the Geza area of southern Yidun arc, SW China. In this area, the rock mass is mainly composed of three lithofacies: biotite granite porphyry, monzonitic granite and light alkali feldspar granite. As a part of the Yidun arc, the Geza arc has common structure and temporal- spatial evolution with the ~idun arc, which has experienced three stages of oceanic crust subduction, collision orogeny and intracontinent convergence stages. The molybdenite ores in the area are mainly hosted in monzonitic granite-porphyry and structural fracture zone, and the ore bodies are strictly controlled by faults. In recent years, great geological prospecting results have been achieved in Xiuwacu, and the deposit has reached a medium scale. However, there are few researches on the metallogenic porphyry. Based on the previous research, we determined the rock-forming and ore-forming age of the porphyry, and found that there were two stages of magmatism intrusion in Xiuwacu: Indosinian and Yanshanian. We also discussed the geochemical characteristics and source area of the rocks in the area.
基金supported by the Central Public Welfare Scientific Research Basic Scientific Research Business Expenses(Grant Nos.KK2005,KY1603)National Natural Science Foundation of China(Grant No.U20A2092)+1 种基金the National Basic Research Program of China(973 Program)(Grant No.2011CB403007)the China Geological Survey(Grant No.DD20190606)。
文摘Deep-seated potassium-rich brines were identified in the Jiangling Basin,South China.Although magmatichydrothermal sources have been proposed,the relationship between brine-type potash mineralization and volcanism remains unclear.In this study,U-Pb geochronology,geochemistry,fluid inclusion and C-O isotopic compositions of hydrothermal vein minerals in the Jiangling Basin are examined.Laser ablation U-Pb dating of calcite veins indicates that the ages are slightly younger than the formation age of the Balingshan basalt.Fluid inclusions in hydrothermal minerals show medium–low homogenization temperatures(160–220℃)and low salinities(0.14 to 4.9 wt%NaCl eqv.)and densities(0.882–0.944 g/cm^(3)).The liquid compositions of fluid inclusions in calcite veins from sedimentary strata have higher contents of potassium,compared with those from basalt.The coupled negativeδ^(13)CPDB(-10.3‰to-8.0‰)and positiveδ^(18)OSMOW(17.4‰to 20.7‰)values imply that calcite precipitation resulted from CO_(2)degassing of the basaltic magmatic fluids,as indicated by the gas composition of these inclusions in hydrothermal minerals.Rare earth element patterns indicate that water-rock interaction between hydrothermal fluids and sedimentary wall rocks contributed to the calcite precipitation in sedimentary strata.It is proposed that high-temperature water-rock interaction between magmatic fluids and sedimentary strata resulted in the potassium enrichment in fluids,interpreted as one of the sources of potassium-rich brines in the Jiangling Basin.
基金funded by research on the strategy of Improving the All-for-one Tourism Transportation Capacity of Changbai Mountain and the China Scholarship Council(Grant Nos.JL2021-03 and 202104190014)。
文摘We report the oxide,element geochemistry and Nd isotopic geochemical data of apatite in the middle Pleistocene medium-and fine-grained trachyte in the Tianchi volcanic area(TVA)of Changbai Mountain,discussing the relationship between apatite and the composition of the whole rock.The purpose is to use the apatite geochemical data to constrain the evolutionary process of trachytic magma and the petrogenesis of trachyte in the cone-forming period of the Tianchi volcano.Apatite(Ca_(5)(PO_(4))_(3)(OH,F,Cl))is a common accessory mineral that occurs widely in volcanic rocks in the TVA.The apatites in the trachyte are mainly subhedral-anhedral,having the characteristics of magmatic apatite.In terms of oxide and element geochemistry,they have homogeneous Al_(2)O_(3),SiO_(2),MgO,P_(2)O_(5),K_(2)O,CaO and heterogeneous TiO2,with high F content.They are generally enriched in Th,U and LREEs,depleted in Nb,Ta,Zr,Hf and HFSEs,showing negative Ba,Sr and Ti anomalies,similar to those of the whole-rock host trachytes.The ratios of high(La/Yb)_(N),low δEu(Eu/Eu*),Sr/Y value and ΣREE content in apatite,and the F,Sr,Y,Th/U,La/Sm,and Nd/Tb with ΣREE andδEu anomalies showed a linear correlation,all of those indicating that the host magma has the characteristic of high differentiation.The apatite grains generally having ^(147)Sm/^(144)Nd,^(143)Nd/^(144)Nd ratios and ε_(Nd)(t)values of 0.1072-0.1195,0.5123-0.5126 and -3.49 to -0.10,respectively,are similiar to those of the host rock.The Nd model ages TDM1 are 949-803 Ma in apatite.Combined with theεNd(t)value of the apatite core(-7.06 to-3.49),we conclude that the initial magma of the host trachyte was derived from the partial melting of Proterozoic crustal material and there was an assimilation of wall rocks during its evolution.
文摘The Merguechoum fluorite-barite mineralization,located in the Eastern Meseta of Morocco,is hosted in the Late Hercynian granite.The ore consists of fine crystals of fluorite 1,massive barite 1,euhedral crystals of fluorite 2,and barite 2 with calcite and minor quartz and sulfides.The Merguechoum ore deposits have never been investigated.This study was the first contribution that studied the genesis of fluorite and barite.The ore occurs as dissemination within granite intrusion and also fills the NE-SWtrending meter-sized fractures and faults.The values of the total Rare Earth Elements and Yttrium(REY)and the ratios of LREY/HREY,Y/Ho,Tb/Ca,and Tb/La indicate that the Merguechoum fluorite precipitated from hydrothermal fluids,likely basinal brines,which interacted with the Hercynian granite.The REY data indicate that the ore-forming fluids of the early stage have intensely interacted with the Hercynian granite compared to those of the late ore stage.The gradual decrease in the europium(Eu/Eu^(*)),yttrium(Y/Y^(*)),and cerium(Ce/Ce^(*))anomalies and a low concentration ofΣREY observed in the second ore stage compared to the first ore stage suggest an increase in p H and fO_(2)and by inference a decrease in temperature during the evolution of the hydrothermal system.This evolution could be explained by fluid mixing between the ascending basinal hydrothermal fluids and the diluted sulfate-rich meteoric water barite separates from selected samples reveal that the dissolved sulfates(SO_(4)^(2-))were derived from Permian–Triassic sulfates and/or coeval poreseawater sulfates.The proposed fluid mixing triggered the precipitation of an early-stage F-Ba assemblage followed by the second-stage F-Ba mineralization.Geologic fieldwork,REY inventories,and isotope data point to the ore genesis during the Permian–Triassic extensional tectonic activity concerning the Pangea rifting.This extensional tectonic environment is likely the driving force that mobilized a large amount of the ore-forming basinal brines along the available faults and fractures to the loci of ore deposition.
基金jointly by National Basic Research Program of China(973 Program) (2007CB411402)the Knowledge innovation project of Chinese Academy of Sciences(KZCX2-YW-Q04-05, KZCX2-YW-111-03)the National Natural Science Foundation of China(No.40573036).
文摘The world-class Huize Pb-Zn deposits of Yunnan province,in southwestern China,located in the center of the Sichuan-Yunnan-Guizhou Pb-Zn polymetallic metallogenic province,has Pb+Zn reserves of more than 5 million tons at Pb+Zn grade of higher than 25%and contains abundant associated metals,such as Ag,Ge,Cd,and Ga.The deposits are hosted in the Lower Carboniferous carbonate strata and the Permian Emeishan basalts which distributed in the northern and southwestern parts of the orefield.Calcite is the only gangue mineral in the primary ores of the deposits and can be classified into three types,namely lumpy,patch and vein calcites in accordance with their occurrence.There is not intercalated contact between calcite and ore minerals and among the three types of calcite,indicating that they are the same ore-forming age with different stages and its forming sequence is from lumpy to patch to vein calcites. This paper presents the rare earth element(REE) and C-O isotopic compositions of calcites in the Huize Pb-Zn deposits.From lumpy to patch to vein calcites,REE contents decrease as LREE/ HREE ratios increase.The chondrite-normalized REE patterns of the three types of calcites are characterized by LREE-rich shaped,in which the lumpy calcite shows(La)_N〈(Ce)_N〈(Pr)_N≈(Nd)_N with Eu/Eu~*〈1,the patch calcite has(La)_N〈(Ce)_N〈(Pr)_N≈(Nd)_N with Eu/Eu~*〉1,and the vein calcite displays(La)_N〉(Ce)_N〉(Pr)_N〉(Nd)_N with Eu/Eu~*〉1.The REE geochemistry of the three types of calcite is different from those of the strata of various age and Permian Emeishan basalt exposed in the orefield.Theδ^(13) C_(PDb) andδ^(18)O_(Smow) values of the three types of calcites vary from-3.5‰to-2.1‰and 16.7‰to 18.6‰,respectively,falling within a small field between primary mantle and marine carbonate in theδ^(13)C_(PDb) vsδ^(18)O_(Smow) diagram. Various lines of evidence demonstrate that the three types of calcites in the deposits are produced from the same source with different stages.The ore-forming fluids of the deposits resulted from crustal -mantle mixing processes,in which the mantle-derived fluid components might be formed from degassing of mantle or/and magmatism of the Permian Emeishan basalts,and the crustal fluid was mainly provided by carbonate strata in the orefield.The ore-forming fluids in the deposits were homogenized before mineralization,and the ore-forming environment varied from relatively reducing to oxidizing.
基金supported by the National Key Basic Research Program(2012CB416700,2007CB411408),a special fund managed by the State Key Laboratory of Ore Deposit Geochemistry,Institute of Geochemistry,Chinese Academy of Sciences,and the State Key Laboratory of Geological Processes and Mineral Resources,China University of Geosciences in Wuhan
文摘Mesozoic granitic intrusions are widely distributed in the Nanling region, South China. Yanshanian granites are closely connected with the formation of tungsten deposits. The Xihuashan granite is a typical representative of tungsten-bearing granite. The Xihuashan granite consists mainly of medium-grained porphyritic biotite granite, medium-grained biotite granite and fine-grained twomica granite, which correspond to LA-ICP-MS zircon U-Pb ages of 555.5±0.4 Ma, 553.0±0.6 Ma and 552.8±0.9 Ma, respectively. Rocks from the Xihuashan mining area displays high SlOe (73.85% to 76.49%) and NaeO+K20 contents (8.09% to 9.43%), belonging to high-K calc-alkaline series. They are metaluminous to weakly peraluminous with A/CNK values ranging from 0.96 to 5.06. All granites in this study area are rich in Rb, Th, U and Pb, and depleted in Ba, Sr, P, Ti, Nb and Eu, especially depleted in medium-grained biotite granite and fine-grained two-mica granite. The medium-grained porphyritic biotite granites usually have high LREE concentrations, whereas medium-grained biotite granite and fine-grained two-mica granite displays high HREE contents. Our geochemical data reveal that the studied rocks are highly fractionated I-type granite. The magma underwent strong magma differentiation with decreasing temperature and increasing oxygen fugacity, which may explain the formation of three types of distinct granites. Variations of Rb, Sr and Ba concentrations in different type granites were controlled by fractional crystallization of biotite and feldspar. Fractional crystallization of monazite, allanite and apatite resulted in LREE changes in granite, and formation of garnet mainly caused HREE changes. Granites from the Xihuashan mining area have relatively high εd(t) values (-9.77 to -55.46), indicating that they were probably generated by partial melting of underlying Proterozoic metasedimentary rocks with minor addition of juvenile crust or mantlederived magmas.
基金financially supported by the Tibetan special foundation of China Geological Survey (No.1212011221088 and No.1212011221087)Natural Science Foundation of China (No.41372208 and No.41472054)open foundation of State Key Laboratory of Ore Deposit Geochemistry,Chinese Academy of Sciences (No.201304)
文摘The Jiang Tso ophiolite, situated in the middle segment of the Bangong- Nujiang Suture Zone, is a part of the easternmost Qieli Lake ophiolite subzone and is close to the south of Pung Lake ophiolite. The rock association of Jiang Tso ophiolite is relatively complete and is mainly composed of metamorphic peridotite, gabbro and diabase. Comparing with N-MORB, the ophiolite is high in Mg and low in Ti, K, Na, P, and is depleted in Nb, Ta, Hf, Th and enriched in Rb, Sr and Ba. Geochemical characteristics of the Jiang Tso ophiolite indicate it is of a supra-subduction zone type formed in the spreading ridge of back arc basin. The SHRIMP U-Pb dating of zircons from the gabbro yielded a weighted average age of 188.1±4.1 Ma (MSWD=1.4), indicating the Jiang Tso ophiolite was formed in the late stage of early Jurassic. The Sr, Nd isotopic compositions show that the Tethyan mantle domain is the depleted mantle (DM), with enriched mantle domain II (EMII). They have the same Sr, Nd isotopic composition with the India Ocean MORB type.
基金supported by grant no K090 1 from the Scientific Research Fund of the China Central Non-Commercial Institutethe Program of Excellent Young Scientists from the Ministry of Land and Resources(200809)+1 种基金grant No40302019 from the National Natural Science Foundation of ChinaGeological Survey Program Grant 1212011085528 from the China Geological Survey
文摘The Tuolugou cobalt deposit is the first independent large-scale Co- and Au-bearing deposit discovered in northwestern China. It is located in the eastern Kunlun orogenic belt in Qinghai Province, and occurs conformably in low-grade metamorphic volcano-sedimentary rock series with well-developed Na-rich hydrothermal sedimentary rocks and typical hydrothermal sedimentary ore fabrics. Fluid inclusions and isotopic geochemistry studies suggest that cobalt mineralizing fluid is dominated by NaCI-H20 system, accompanied by NaCI-CO2-H20-N2 system responsible for gold mineralization. Massive, banded and disseminated pyrite ores have similar compositions of He and Ar isotopes from the mineralizing fluid, with 3He/4He range between 0.10 to 0.31Ra (averaging 0.21Ra), and 4~Ar/36Ar between 302 and 569 (averaging 373), which reflects that Co mineralizing fluids derived dominantly from meteoric water deeply circulating. ~34S values of pyrite approaches to zero (~34S ranging from -4.5%o to +1.5%o, centering around -1.8%o to -0.2%o), reflecting its deep source. Ore lead is characterized by distinctly high radiogenesis, with 2~6pb/2~4pb〉19.279, 2~7pb/2~4pb〉15.691 and 2~spb/2~4pb〉39.627, and its values show an increase trend from country rocks, regional Paleozoic volcanic rocks to ores. This may have suggested that high radiogentic ore Pb derived mainly from country rocks by leaching meteoric water-dominated hydrothermal fluid during its circulation at depth. Cobalt occurs mainly in sulfide phase (such as pyrite), but cobalt enrichment, and presence and increasing contents of Co-bearing minerals have a positive correlation with metamorphic degree. The Tuolugou deposit and other typical strata-bound Co-Cu-Au deposits have striking similarities in the geological features and metallogenic pattern of primary cobalt. All of them are syngenetic hydrothermal exhalative sedimentation in origin.
文摘According to the age measurements of single zircon evaporation method, combined with the study of Nd isotopic geochemistry in Tongbai area, the protolith age of basic granulites is about 1 010 Ma; the protolith age of intermediate acid granulites is probably more than 904 Ma, which is close to the age of the basic granulites. The basic granulites would be the nature occurrence of basic magma underplating beneath the base of lower crust in the North Qinling crustal vertical growth event at about 1 000 Ma. However, the intermediate acid granulites were the result of the mixing fusion between the lower crust material and the underplating basic magma, which shows a strong crust mantle interaction. The 470-480 Ma are the peak metamorphic ages of the basic and intermediate acid granulites, which related to the crust bi direction shortening and crust thickening due to the Erlangping back arc basin southward subduction and the paleo Qinling oceanic plate northward subduction.
基金This work was financially suppo.rted by the National Natural Science Foundation of China (No. 40372038 and No. 40325006) Special Grant of 0il & Gas Research (XQ-2004-07).
文摘Mesozoic bimodal volcanic rocks of basaltic andesite and rhyolite are widely distributed in the Da Hinggan Range, but their petrogenetic relationships and geodynamic implications are rarely constrained. Detailed studies on doleritic and porphyry dikes in the Zhalantun area indicate that they display features of magma mixing, suggesting their coeval formation. In situ zircon U-Pb dating shows that the porphyry was emplaced in the Early Cretaceous with a ^206Pb/^238U age of 130±1 Ma. Zircons from the dolerite also yield an Early Cretaceous emplacement age of 124±2 Ma although some inherited zircons have been identified. These age results indicate that the Early Cretaceous was an important period of magmatism in the Da Hinggan Range. Zircons from porphyry are characterized by positive value of εHf(t) as high as 10.3±0.5 with Hf depleted mantle model age of 349-568 Ma, whereas magmatic zircons from the dolerite have εHf(t) value of 11.0±1.4 with Hf depleted mantel model age of 342-657 Ma, consistent with those from the porphyry. Considering other data on the geological evolution of this area, it is concluded that the mafic magma originated from the partial melting of Paleozoic enriched lithospheric mantle, whereas the felsic magma came from recycling of juvenile crust formed during the Paleozoic. Both of the protoliths are closely related to the subduction of the Paleo-Asian Ocean during the Paleozoic, indicating that the Paleozoic is an important period of large-scale crustal growth in the area.
基金This study is financially supported by the National Natural Science Foundation of China (No. 40420120135).
文摘In this paper we report geochemical and Nd-Sr isotopic data for a late Archean gneissic granitic pluton (Hengling pluton), an early Paleoproterozoic complex (Xipan complex) and a late Paleoproterozoic granitic pluton (Yunzhongshan granites) from the Liiliang-Wutai terrain, North China, to trace the source of these late Archean-Paleoproterozoic granitoids and, particularly, to understand the nature and mechanism of continental growth at that time. The Hengling granitic gneisses (ca. 2.51 Ga) are characterized by high Na2O and LILEs, TTG-like REE patterns (highly depleted HREE and minor Eu anomalies) and moderately depleted Nd-Sr isotopic compositions (εNd(t) =1.2-2.7, ISr=0.7015-0.7019), and were considered as being products of arc magmatism that was developed upon the North China craton. The Xipan complex (ca. 2.2 Ga) contain gabbroic diorite and monzonite, mostly being Na2O-rich, highly fractionated REE patterns and isotopically enriched (εNd(t) =-1.5 to -4.1, Isr=0.7038-0.706). The gabbroic diorites probably originated from melting of an enriched mantle source, but significantly contaminated by lower crustal material, and the monzonites probably represent a product of a mixture between the gabbroic dioritic magma and granitic melts of crustal origin. The Yunzhongshan post-collisional granitoids (ca. 1.8 Ga) are characterized by high-K affinity and highly-enriched and homogeneous Nd isotopic compositions (εNd(t)=-4.9 to -5.7), although they split into two groups in terms of REE patterns: one group showing elevated HREE (and Sc, Y and Zr) with significant negative Eu anomalies and the other showing highly depleted HREE and, to a lesser extent, mid-REE with negligible Eu anomalies. These granites are genetically related to a process of extensional collapse of a thickened orogen. They formed through magma mixing between mantle-derived basaltic magmas and crust-derived granitic melts, followed by significant fractionation of ferromagnesian phases (like hornblende and Cpx) and feldspar and accessory zircons. Some Yunzhongshan granites show very old Nd model ages (2.9-3.0 Ga), suggesting the existence of continental crust older than 2.7 Ga, which is supported by our zircon Hf isotopic data for these granites.
基金financially supported by the Programme of the China Geological Survey (No.1212011120608, No.1212011220907)the National Key Projects for Basic Research of China (No.2009CB421002, No.2011CB403102)+2 种基金NSF of China (No. 40672044)Program for Changjiang Scholars, Innovative Research Team in University (No.IRT1083)111 project (No.B07011)
文摘The Kejie pluton is located in the north of the Changning-Menglian suture zone. The rock types are mainly biotite-granite. Zircon LA-ICP-MS U-Pb dating indicates that the Kejie pluton emplaced at about 80-77 Ma, Late Cretaceous. The Kejie pluton samples are characterized by high SiO2 (71.68%-72.47%), K2O (4.73%-5.54%), total alkali (K2O + Na2O = 8.21%-8.53%), K2O/Na2O ratios (1.36-1.94) and low P2O5 (0.13%-0.17%), with A/CNK of 1.025-1.055; enriched in U, Th, and K, depleted in Ba, Nb, St, Ti, P and Eu. They are highly fractionated, slightly peraluminous 1-type granite. The two samples of the Kejie pluton give a large variation of εHf(t) values (-5.04 to 1.96) and Hf isotope crustal model ages of 1.16-1.5 Ga. Zircon Hf isotopes and zircon saturation temperatures of whole-rock (801℃-823℃) show that the mantle-derived materials maybe have played a vital role in the generation of the Kejie pluton. The Kejie pluton was most likely generated in a setting associated with the eastward subduction of the neo-Tethys ocean, where intrusion of mantle wedge basaltic magmas in the crust caused the anatexis of the latter, forming hybrid melts, which subsequently experienced high-degree fractional crystallization.
基金financially supported by the National Project of Scientific and Technological Support(Grant No:2006BAB01A11)
文摘The Laocheng granitoid pluton is located in the South Qinling tectonic domain of the Qinling orogenic belt,southern Shaanxi Province,and consists chiefly of quartz diorite,granodiorite and monzogranite.A LA-ICP-MS zircon U-Pb isotopic dating,in conjunction with cathodoluminescence images,reveals that the quartz diorite and granodiorite were emplaced from 220 Ma to 216 Ma,while the monzogranite was emplaced at~210 Ma.In-situ zircon Hf isotopic analyses show that theε_(Hf)(t) values of the quartz diorite and granodiorite range from-8.1 to +1.3,and single-stage Hf model ages from 809 Ma to 1171 Ma,while theε_(Hf)(t)values of the monzogranite are-14.5 to +16.7 and single-stage Hf model ages from 189 Ma to 1424 Ma.These Hf isotopic features reveal that the quartz diorite, granodiorite and monzogranite were formed from the mixing of the magmas derived from partial melting of the depleted mantle and the lower continent crustal materials,and there were two stages of continental crust growth during the Neoproterozoic(~800 Ma)and Indosinian(~210 Ma)eras, respectively,in the south Qinling tectonic domain of the Qinling orogrnic belt,Central China.