This paper proposes a Mach Zehnder/Fabry Perot Interferometer(MZI/FPI)fiber sensor based on Single-mode Fiber(SMF)and Hollow-core Fiber(HCF),which has high sensitivity to temperature and lateral loads.The proposed dev...This paper proposes a Mach Zehnder/Fabry Perot Interferometer(MZI/FPI)fiber sensor based on Single-mode Fiber(SMF)and Hollow-core Fiber(HCF),which has high sensitivity to temperature and lateral loads.The proposed device consists of two single-mode fiber cones formed by manually controlling the fusion splicer and an air cavity formed by fusing a section of hollow-core fiber.The structure of the sensor is a double cone cascaded air cavity.At the beginning of the design,we compared the basic transmission spectra of single cone structure and double cone structure experimentally,and therefore chose to use double cone structure and air cavity cascade.Light undergoes its first reflection at the first interface between the single-mode fiber and the air cavity structure,and its second reflection at the second interface between the air cavity structure and the single-mode fiber.The two reflected light waves produced by the two reflections form FP interference,which can be used to measure lateral loads.The transmitted light is excited through the first cone,and a portion of the core mode light is excited to the cladding,while another portion of the core mode light continues to propagate in the core.The light couples at the second cone,and the cladding mode light couples back into the core,forming MZ interference with the core mode light,which can be used to measure temperature.The use of hollow-core fiber to form an air cavity has little effect on transmitted light,while avoiding the problem of crosstalk in dual parameter measurements.By designing temperature and lateral load experiments,this article verifies the sensitivity characteristics of this sensor to temperature and lateral loads.A significant redshift phenomenon was observed in the temperature experiment.A significant redshift phenomenon also occurred in the lateral load experiment.Through wavelength demodulation,the experimental results show that the wavelength sensitivity of the sensor to temperature is 56.29 pm/℃in the range of 30℃to 80℃.The wavelength sensitivity of the sensor to lateral loads is 1.123 nm/N in the range of 0~5 N.In addition,we have prepared multiple sets of fiber optic sensors with this structure and conducted repeated experiments to verify that the sensing performance of this structure of fiber optic sensors for temperature and lateral load is relatively stable.Also,the different waist diameters of cones will have a certain impact on the transmission spectrum of MZ,while the length of the air cavity will also have a certain impact on the reflection spectrum of FP.This article lists some fiber optic sensors for dual parameter measurement of temperature and lateral load.Compared with the listed sensors,the fiber optic sensor proposed in this article has better sensitivity to temperature and lateral load.And the fiber optic sensor proposed in this article has a simple manufacturing process,low production cost,and good performance,which has certain prospects in scientific research and industrial production.展开更多
Distributed fiber optic sensors(DFOSs)possess the capability to measure strain and temperature variations over long distances,demonstrating outstanding potential for monitoring underground infrastructure.This study pr...Distributed fiber optic sensors(DFOSs)possess the capability to measure strain and temperature variations over long distances,demonstrating outstanding potential for monitoring underground infrastructure.This study presents a state-of-the-art review of the DFOS applications for monitoring and assessing the deformation behavior of typical tunnel infrastructure,including bored tunnels,conventional tunnels,as well as immersed and cut-and-cover tunnels.DFOS systems based on Brillouin and Rayleigh scattering principles are both considered.When implementing DFOS monitoring,the fiber optic cable can be primarily installed along transverse and longitudinal directions to(1)measure distributed strains by continuously adhering the fiber to the structure’s surface or embedding it in the lining,or(2)measure point displacements by spot-anchoring it on the lining surface.There are four critical aspects of DFOS monitoring,including proper selection of the sensing fiber,selection of the measuring principle for the specific application,design of an effective sensor layout,and establishment of robust field sensor instrumentation.These four issues are comprehensively discussed,and practical suggestions are provided for the implementation of DFOS in tunnel infrastructure monitoring.展开更多
The battery technology progress has been a contradictory process in which performance improvement and hidden risks coexist.Now the battery is still a“black box”,thus requiring a deep understanding of its internal st...The battery technology progress has been a contradictory process in which performance improvement and hidden risks coexist.Now the battery is still a“black box”,thus requiring a deep understanding of its internal state.The battery should“sense its internal physical/chemical conditions”,which puts strict requirements on embedded sensing parts.This paper summarizes the application of advanced optical fiber sensors in lithium-ion batteries and energy storage technologies that may be mass deployed,focuses on the insights of advanced optical fiber sensors into the processes of one-dimensional nano-micro-level battery material structural phase transition,electrolyte degradation,electrode-electrolyte interface dynamics to three-dimensional macro-safety evolution.The paper contributes to understanding how to use optical fiber sensors to achieve“real”and“embedded”monitoring.Through the inherent advantages of the advanced optical fiber sensor,it helps clarify the battery internal state and reaction mechanism,aiding in the establishment of more detailed models.These advancements can promote the development of smart batteries,with significant importance lying in essentially promoting the improvement of system consistency.Furthermore,with the help of smart batteries in the future,the importance of consistency can be weakened or even eliminated.The application of advanced optical fiber sensors helps comprehensively improve the battery quality,reliability,and life.展开更多
Delamination is a prevalent type of damage in composite laminate structures.Its accumulation degrades structural performance and threatens the safety and integrity of aircraft.This study presents a method for the quan...Delamination is a prevalent type of damage in composite laminate structures.Its accumulation degrades structural performance and threatens the safety and integrity of aircraft.This study presents a method for the quantitative identification of delamination identification in composite materials,leveraging distributed optical fiber sensors and a model updating approach.Initially,a numerical analysis is performed to establish a parameterized finite element model of the composite plate.Then,this model subsequently generates a database of strain responses corresponding to damage of varying sizes and locations.The radial basis function neural network surrogate model is then constructed based on the numerical simulation results and strain responses captured from the distributed fiber optic sensors.Finally,a multi-island genetic algorithm is employed for global optimization to identify the size and location of the damage.The efficacy of the proposed method is validated through numerical examples and experiment studies,examining the correlations between damage location,damage size,and strain responses.The findings confirm that the model updating technique,in conjunction with distributed fiber optic sensors,can precisely identify delamination in composite structures.展开更多
To address the restriction of fiber-optic surface plasmon resonance(SPR) sensors in the field of multi-sample detection, a novel dual-channel fiber-optic SPR sensor based on the cascade of coaxial dual-waveguide D-typ...To address the restriction of fiber-optic surface plasmon resonance(SPR) sensors in the field of multi-sample detection, a novel dual-channel fiber-optic SPR sensor based on the cascade of coaxial dual-waveguide D-type structure and microsphere structure is proposed in this paper. The fiber sidepolishing technique converts the coaxial dual-waveguide fiber into a D-type one, and the evanescent wave in the ring core leaks, generating a D-type sensing region;the fiber optic fused ball push technology converts the coaxial dual waveguides into microspheres, and the stimulated cladding mode evanescent wave leaks, producing the microsphere sensing region. By injecting light into the coaxial dual-waveguide middle core alone, the sensor can realize single-stage sensing in the microsphere sensing area;it can also realize dual-channel sensing in the D-type sensing area and microsphere sensing area by injecting light into the ring core. The refractive index measurement ranges for the two channels are 1.333–1.365 and 1.375–1.405, respectively, with detection sensitivities of 981.56 nm/RIU and 4138 nm/RIU. The sensor combines wavelength division multiplexing and space division multiplexing technologies, presenting a novel research concept for multi-channel fiber SPR sensors.展开更多
Fiber cladding surface plasmon resonance(SPR)sensors have few structures,and a clad SPR sensor based on S-type fiber is proposed in this paper.This new type of fiber cladding SPR sensor was formed by electrofusing an ...Fiber cladding surface plasmon resonance(SPR)sensors have few structures,and a clad SPR sensor based on S-type fiber is proposed in this paper.This new type of fiber cladding SPR sensor was formed by electrofusing an S-shaped structure on the fiber to couple the light in the fiber core to the cladding.In this paper,the effects of fiber parameters on the performance of the sensor were studied by simulation and experiment.Based on the conclusion that the smaller the core diameter is,the closer the working band of the SPR resonance is to long wavelengths,and that the geometric characteristics mean that a multimode fiber can receive the fiber cladding light from a small core diameter few-mode fiber,a dual channel SPR sensor with a double S-type fiber cascade was proposed.In the refractive index detection range of 1.333–1.385refractive index units(RIU),the resonant working band of channel I is 627.66 nm–759.78 nm,with an average sensitivity of 2540.77 nm/RIU,and the resonant working band of channel II is 518.24 nm–658.2 nm,with an average sensitivity of2691.54 nm/RIU.The processing method for the S-type fiber cladding SPR sensor is simple,effectively solving the problem of this type of SPR sensor structure and the difficult realization of a dual channel.The sensor is expected to be used in the fields of medical treatment and biological analysis.展开更多
A novel fiber optic sensor based on hydrogel-immobilized enzyme complex was developed for the simultaneous measurement of dual-parameter,the leap from a single parameter detecting fiber optic sensor to a fiber optic s...A novel fiber optic sensor based on hydrogel-immobilized enzyme complex was developed for the simultaneous measurement of dual-parameter,the leap from a single parameter detecting fiber optic sensor to a fiber optic sensor that can continuously detect two kinds of parameters was achieved.By controlling the temperature from high to low,the function of fiber sulfide sensor and fiber DCP sensor can be realized,so as to realize the continuous detection of dual-parameter.The different variables affecting the sensor performance were evaluated and optimized.Under the optimal conditions,the response curves,linear detection ranges,detection limits and response times of the dual-parameter sensor for testing sulfide and DCP were obtained,respectively.The sensor displays high selectivity,good repeatability and stability,which have good potentials in analyzing sulfide and DCP concentration of practical water samples.展开更多
A novel method for designing chalcogenide long-period fiber grating(LPFG) sensors based on the dual-peak resonance effect of the LPFG near the phase matching turning point(PMTP) is presented. Refractive index sensing ...A novel method for designing chalcogenide long-period fiber grating(LPFG) sensors based on the dual-peak resonance effect of the LPFG near the phase matching turning point(PMTP) is presented. Refractive index sensing in a high-refractive-index chalcogenide fiber is achieved with a coated thinly clad film. The dual-peak resonant characteristics near the PMTP and the refractive index sensing properties of the LPFG are analyzed first by the phase-matching condition of the LPFG. The effects of film parameters and cladding radius on the sensitivity of refractive index sensing are further discussed. The sensor is optimized by selecting the appropriate film parameters and cladding radius. Simulation results show that the ambient refractive index sensitivity of a dual-peak coated thinly clad chalcogenide LPFG at the PMTP can be 2400 nm/RIU, which is significantly higher than that of non-optimized gratings. It has great application potential in the field of chemical sensing and biosensors.展开更多
Fiber Bragg grating(FBG)sensors are often used in monitoring activities and to ensure that environmental parameters satisfy industrial requirements.They offer crucial safety measures in the early detection of hazards ...Fiber Bragg grating(FBG)sensors are often used in monitoring activities and to ensure that environmental parameters satisfy industrial requirements.They offer crucial safety measures in the early detection of hazards due to their greatly reduced size,low weight,flexibility,and immunity to electromagnetic interference.These characteristics make FBGs suitable also for use in relation to the human body for in vivo measurements and long-term monitoring.In this study,recent developments are presented with regard to the utilization of these sensors to measure the so-called post-mortem interval(PMI).Such developments rely on numerical simulations based on the Matlab software and monitoring of the rectal temperature,which is one of the main parameters for estimating the PMI.First,the Matlab software is used to solve the Henssge equation for different ambient temperatures and for different body masses;then a Bragg grating sensors is used for post-mortem dating.The results and their accuracy are discussed.展开更多
A refractive index(RI)sensor based on the surface plasmon resonance effect is proposed using a truncated cladding negative curvature fiber(TC-NCF).The influences of the TC-NCF structure parameters on the sensing perfo...A refractive index(RI)sensor based on the surface plasmon resonance effect is proposed using a truncated cladding negative curvature fiber(TC-NCF).The influences of the TC-NCF structure parameters on the sensing performances are investigated and compared with the traditional NCF.The simulation results show that the proposed TC-NCF RI sensor has an ultra-wide detection range from 1.16 to 1.43.The maximum wavelength sensitivity reaches 12400 nm/RIU,and the corresponding R^(2)of the polynomial fitting equation is 0.9999.The maximum and minimum resolutions are 2.56×10^(-5)and 8.06×10^(-6),respectively.In addition,the maximum amplitude sensitivity can reach-379.1 RIU^(-1)when the RI is chosen as 1.43.The proposed TC-NCF RI sensor could be useful in biochemical medicine,environmental monitoring,and food safety.展开更多
Refractometric fiber optic sensors have a number of applications in industry due to advantages like remote sensing ability, compact size, easy to fit, etc. A refractometric sensor contains a pair of parallel fibers an...Refractometric fiber optic sensors have a number of applications in industry due to advantages like remote sensing ability, compact size, easy to fit, etc. A refractometric sensor contains a pair of parallel fibers and a gap between the sensor probe and reflector, wherein the liquid whose refractive index is to be measured is filled. This paper describes the importance of mathematical modeling of this sensor. Ray tracing approach is used to model the sensor mathematically. This mathematical model is generalized for any scenario which is useful to avoid tedious trial and error techniques to design the sensor prototype. Mathematical modelling is a useful tool to optimize the gap distance for a detection of refractive index of liquid. The model is developed and analyzed rigorously considering adulteration of diesel by kerosene where refractive index varies from 1.44 to 1.46. Simulation experiments are carried out to optimize the gap distance which is found to be 6.8 mm using both models. Experiments are carried out where sensor probe is fabricated and results are analyzed. It is observed that for suggested gap distance sensor output varies almost linear over the entire range.展开更多
Whether in the monitoring of critically ill patients such as shock, respiratory failure, brain injury, or in major anesthesia surgeries, it is necessary to evaluate the patient’s pO<sub>2</sub> and pH. An...Whether in the monitoring of critically ill patients such as shock, respiratory failure, brain injury, or in major anesthesia surgeries, it is necessary to evaluate the patient’s pO<sub>2</sub> and pH. An optical fiber sensor presented is capable of monitoring the presence of oxygen partial pressure (pO<sub>2</sub>) and pH in the real-time. The sensor is based on fluorescence sensing of polymer immobilized in the oxygen/pH-sensitive membranes and covalently attached to the optical fiber probe. The design of this sensor uses LED as light source, which is an excitation light source, inducing specific wavelengths of fluorescence on the oxygen/pH-sensitive membrane. The intensity and lifetime of fluorescence are related to the pO<sub>2</sub> and pH. So the pO<sub>2</sub> and pH can be measured by the relationship between the pO<sub>2</sub>/pH values and the intensity and lifetime of fluorescence. The signal conditioning system based on DSP and STM32 was used to store and process data, and display test values. The response of the sensor for pO<sub>2</sub> and pH monitoring with nitrogen (N<sub>2</sub>) as a balancing gas in the laboratory was performed. Finally, the oxygen/pH sensing scheme presented in this work is intended for using in biological, medical and environmental applications.展开更多
Silk is widely used in the production of high-quality textiles.At the same time,the amount of silk textiles no longer in use and discarded is increasing,resulting in significant waste and pollution.This issue is of gr...Silk is widely used in the production of high-quality textiles.At the same time,the amount of silk textiles no longer in use and discarded is increasing,resulting in significant waste and pollution.This issue is of great concern in many countries where silk is used.Hydrogen peroxide as a naturally occurring compound is an important indicator of detection in both biology and the environment.This study aims to develop a composite fiber with hydrogen peroxide-sensing properties using discarded silk materials.To achieve this goal,firstly,polydopamine(PDA)was used to encapsulate the ZnFe_(2)O_(4) NPs to achieve the improvement of dispersion,and then regenerated silk fibroin(RSF)and PDA@ZnFe_(2)O_(4)/RSF hybrid fibers are prepared by wet spinning.Research has shown that PDA@ZnFe_(2)O_(4)/RSF demonstrates exceptional sensitivity,selectivity,and stability in detecting hydrogen peroxide,while maintaining high mechanical strength.Furthermore,the complete hybridization of PDA@ZnFe_(2)O_(4) with silk fibroin not only results in the combination of the durability of silk fibroin and PDA@ZnFe_(2)O_(4)’s rigidity,ensuring a reliable service life,but also makes PDA@ZnFe_(2)O_(4)/RSF exhibit excellent catalytic activity and biocompatibility.Therefore,the composite fiber exhibits exceptional mechanical properties and reliable hydrogen peroxide sensing capabilities,making it a promising material for biological and medical applications.展开更多
Static ice pressure affects safe operation of hydraulic structures. However, current detection methods are hindered by the following limitations: poor real-time performance and errors owing to the partial pressure of...Static ice pressure affects safe operation of hydraulic structures. However, current detection methods are hindered by the following limitations: poor real-time performance and errors owing to the partial pressure of the surrounding wall on traditional electrical resistance strain bellow pressure sensors. We developed a fiber optic sensor with a special pressure bellow to monitor the static ice pressure on hydraulic structures and used the sensor to measure static pressure in laboratory ice growth and melting tests from -30℃ to 5℃. The sensor resolution is 0.02 kPa and its sensitivity is 2.74 × 10-4/kPa. The experiments suggest that the static ice pressure peaks twice during ice growth and melting. The first peak appears when the ice temperature drops to -15℃ owing to the liquid water to solid ice transition. The second peak appears at 0℃ owing to the thermal expansion of the ice during ice melting. The novel fiber optic sensor exhibits stable performance, high resolution, and high sensitivity and it can be used to monitor the static ice pressure during ice growth and melting.展开更多
The plasma resonance fiber optic sensor has a research values in theory and is widely used in engineering because of its simple structure and high sensitivity. It is a simple and sensitive method to measure the refrac...The plasma resonance fiber optic sensor has a research values in theory and is widely used in engineering because of its simple structure and high sensitivity. It is a simple and sensitive method to measure the refractive index with optical fiber plasma wave. We make use of this characteristic to manufacture the plasma resonance fiber optic sensor which can detect the cure of epoxy compo site. We study the method of testing the solutions which have different refractive index with plasma resonance fiber optic sensor. A fiber optic sensing probe which has reliable performance and convenient operation for detecting the refractive index has been designed. The system for detecting the solution refractive index is developed and used to measure the refractive index of epoxy during the different phases in the cure process. Result shows that this system is credible and stable, the parameters tested are in accord with the facts.展开更多
The distributed strain sensor has significant application in real time measurement of strain status for large and important engineering structures such as aircraft, bridge and dam. In this paper, a quasi distributed...The distributed strain sensor has significant application in real time measurement of strain status for large and important engineering structures such as aircraft, bridge and dam. In this paper, a quasi distributed optical fiber strain sensor system is set up using optical time domain reflect technique. The local strain sensors based on a novel microbend configuration are designed and applied to measure local strains along the optical fiber. As the result of the experimental research, the microbend sensors show high sensitivity, good linearity and repeatability in certain operation range.展开更多
This paper presents an optical sensor technique used in the damage evaluation which is formed by structurally integrated fiber optic reticulate sensors embedded in the composite materials. The fibers are processed by ...This paper presents an optical sensor technique used in the damage evaluation which is formed by structurally integrated fiber optic reticulate sensors embedded in the composite materials. The fibers are processed by chemical method and their outsides are peeled to form particles of irregular distribution and they differ in size, so the slight disturbance range of stochastic wall are formed in fibers. According to the characteristics of power loss of waveguide mode caused by slight disturbance of stochastic wall and radiative mode transmission, the range of slight disturbance of stochastic wall may be served as the sensitive range of the sensor. On the basis of theory of slight disturbance of stochastic wall of planar optical waveguide, the relation between the corrosion time and the opposite power loss by experiments is investigated. In this paper, the measurement results of object of SIFORS are also presented. The results show that the optical sensor technique may be used in the damage evaluation of an aircraft.展开更多
A self referenced fiber optic refractive index sensor is developed to measure quantitative cure extent of epoxy. In case the sensor is applied to in situ cure monitoring of epoxy composites, each sensor embedded in...A self referenced fiber optic refractive index sensor is developed to measure quantitative cure extent of epoxy. In case the sensor is applied to in situ cure monitoring of epoxy composites, each sensor embedded in different location within the structure is self referenced and can be normalized to a common scale. Therefore, the real time comparative of each sensor’s output becomes possible and variations in the extent of cure at different locations can be monitored. The developed sensor was used to monitor the isothermal cure of an epoxy system. The output of the sensor was compared with the results of the differential scanning calorimetry (DSC). The self referencing function of the sensor is confirmed.展开更多
Wearable strain sensors are arousing increasing research interests in recent years on account of their potentials in motion detection,personal and public healthcare,future entertainment,man-machine interaction,artific...Wearable strain sensors are arousing increasing research interests in recent years on account of their potentials in motion detection,personal and public healthcare,future entertainment,man-machine interaction,artificial intelligence,and so forth.Much research has focused on fiber-based sensors due to the appealing performance of fibers,including processing flexibility,wearing comfortability,outstanding lifetime and serviceability,low-cost and large-scale capacity.Herein,we review the latest advances in functionalization and device fabrication of fiber materials toward applications in fiber-based wearable strain sensors.We describe the approaches for preparing conductive fibers such as spinning,surface modification,and structural transformation.We also introduce the fabrication and sensing mechanisms of state-of-the-art sensors and analyze their merits and demerits.The applications toward motion detection,healthcare,man-machine interaction,future entertainment,and multifunctional sensing are summarized with typical examples.We finally critically analyze tough challenges and future remarks of fiber-based strain sensors,aiming to implement them in real applications.展开更多
We propose a side-core holey fiber (SCHF)-based surface plasmon resonance (SPR) sensor to achieve high refractive index (RI) sensitivity. The SCHF structure can facilitate analyte filling and enhance the overlap...We propose a side-core holey fiber (SCHF)-based surface plasmon resonance (SPR) sensor to achieve high refractive index (RI) sensitivity. The SCHF structure can facilitate analyte filling and enhance the overlapping area of the core mode and surface plasmon polariton (SPP) mode. The coupling properties of the sensor are analyzed by numerical simulation. The maximum sensitivity of 5000 nm/RIU in an RI range of 1.33-1.44, and the average sensitivity of 9295 nm/RIU in an RI range from 1.44 to 1.54 can be obtained.展开更多
基金National Natural Science Foundation of China(Nos.6207509,U2001601,61975084)the Jiangsu Provincial Key Research and Development Program(Nos.BE2022079,BE2022055-2)。
文摘This paper proposes a Mach Zehnder/Fabry Perot Interferometer(MZI/FPI)fiber sensor based on Single-mode Fiber(SMF)and Hollow-core Fiber(HCF),which has high sensitivity to temperature and lateral loads.The proposed device consists of two single-mode fiber cones formed by manually controlling the fusion splicer and an air cavity formed by fusing a section of hollow-core fiber.The structure of the sensor is a double cone cascaded air cavity.At the beginning of the design,we compared the basic transmission spectra of single cone structure and double cone structure experimentally,and therefore chose to use double cone structure and air cavity cascade.Light undergoes its first reflection at the first interface between the single-mode fiber and the air cavity structure,and its second reflection at the second interface between the air cavity structure and the single-mode fiber.The two reflected light waves produced by the two reflections form FP interference,which can be used to measure lateral loads.The transmitted light is excited through the first cone,and a portion of the core mode light is excited to the cladding,while another portion of the core mode light continues to propagate in the core.The light couples at the second cone,and the cladding mode light couples back into the core,forming MZ interference with the core mode light,which can be used to measure temperature.The use of hollow-core fiber to form an air cavity has little effect on transmitted light,while avoiding the problem of crosstalk in dual parameter measurements.By designing temperature and lateral load experiments,this article verifies the sensitivity characteristics of this sensor to temperature and lateral loads.A significant redshift phenomenon was observed in the temperature experiment.A significant redshift phenomenon also occurred in the lateral load experiment.Through wavelength demodulation,the experimental results show that the wavelength sensitivity of the sensor to temperature is 56.29 pm/℃in the range of 30℃to 80℃.The wavelength sensitivity of the sensor to lateral loads is 1.123 nm/N in the range of 0~5 N.In addition,we have prepared multiple sets of fiber optic sensors with this structure and conducted repeated experiments to verify that the sensing performance of this structure of fiber optic sensors for temperature and lateral load is relatively stable.Also,the different waist diameters of cones will have a certain impact on the transmission spectrum of MZ,while the length of the air cavity will also have a certain impact on the reflection spectrum of FP.This article lists some fiber optic sensors for dual parameter measurement of temperature and lateral load.Compared with the listed sensors,the fiber optic sensor proposed in this article has better sensitivity to temperature and lateral load.And the fiber optic sensor proposed in this article has a simple manufacturing process,low production cost,and good performance,which has certain prospects in scientific research and industrial production.
基金funding support from Rijkswaterstaat,the Netherlands,and European Union’s Horizon 2020 Research and Innovation Programme(Project SAFE-10-T under Grant No.723254)China Scholarship Council,and National Natural Science Foundation of China(Grant No.42225702).
文摘Distributed fiber optic sensors(DFOSs)possess the capability to measure strain and temperature variations over long distances,demonstrating outstanding potential for monitoring underground infrastructure.This study presents a state-of-the-art review of the DFOS applications for monitoring and assessing the deformation behavior of typical tunnel infrastructure,including bored tunnels,conventional tunnels,as well as immersed and cut-and-cover tunnels.DFOS systems based on Brillouin and Rayleigh scattering principles are both considered.When implementing DFOS monitoring,the fiber optic cable can be primarily installed along transverse and longitudinal directions to(1)measure distributed strains by continuously adhering the fiber to the structure’s surface or embedding it in the lining,or(2)measure point displacements by spot-anchoring it on the lining surface.There are four critical aspects of DFOS monitoring,including proper selection of the sensing fiber,selection of the measuring principle for the specific application,design of an effective sensor layout,and establishment of robust field sensor instrumentation.These four issues are comprehensively discussed,and practical suggestions are provided for the implementation of DFOS in tunnel infrastructure monitoring.
基金the National Natural Science Foundation of China(No.52307245[Y.D.Li],No.U21A20170[X.He],22279070[L.Wang],and 52206263[Y.Song])the China Postdoctoral Science Foundation(No.2022M721820[Y.D.Li])the Ministry of Science and Technology of China(No.2019YFA0705703[L.Wang])。
文摘The battery technology progress has been a contradictory process in which performance improvement and hidden risks coexist.Now the battery is still a“black box”,thus requiring a deep understanding of its internal state.The battery should“sense its internal physical/chemical conditions”,which puts strict requirements on embedded sensing parts.This paper summarizes the application of advanced optical fiber sensors in lithium-ion batteries and energy storage technologies that may be mass deployed,focuses on the insights of advanced optical fiber sensors into the processes of one-dimensional nano-micro-level battery material structural phase transition,electrolyte degradation,electrode-electrolyte interface dynamics to three-dimensional macro-safety evolution.The paper contributes to understanding how to use optical fiber sensors to achieve“real”and“embedded”monitoring.Through the inherent advantages of the advanced optical fiber sensor,it helps clarify the battery internal state and reaction mechanism,aiding in the establishment of more detailed models.These advancements can promote the development of smart batteries,with significant importance lying in essentially promoting the improvement of system consistency.Furthermore,with the help of smart batteries in the future,the importance of consistency can be weakened or even eliminated.The application of advanced optical fiber sensors helps comprehensively improve the battery quality,reliability,and life.
基金supported by the National Natural Science Foundation of China(No.12072056)the National Key Research and Development Program of China(No.2018YFA0702800)+1 种基金the Jiangsu-Czech Bilateral Co-Funding R&D Project(No.BZ2023011)the Fundamental Research Funds for the Central Universities(No.B220204002).
文摘Delamination is a prevalent type of damage in composite laminate structures.Its accumulation degrades structural performance and threatens the safety and integrity of aircraft.This study presents a method for the quantitative identification of delamination identification in composite materials,leveraging distributed optical fiber sensors and a model updating approach.Initially,a numerical analysis is performed to establish a parameterized finite element model of the composite plate.Then,this model subsequently generates a database of strain responses corresponding to damage of varying sizes and locations.The radial basis function neural network surrogate model is then constructed based on the numerical simulation results and strain responses captured from the distributed fiber optic sensors.Finally,a multi-island genetic algorithm is employed for global optimization to identify the size and location of the damage.The efficacy of the proposed method is validated through numerical examples and experiment studies,examining the correlations between damage location,damage size,and strain responses.The findings confirm that the model updating technique,in conjunction with distributed fiber optic sensors,can precisely identify delamination in composite structures.
基金supported by the National Natural Science Foundation of China (Grant No. 61705025)the Natural Science Foundation of Chongqing (Grant Nos. cstc2019jcyjmsxm X043 and cstc2018jcyj AX0817)+2 种基金the Fund from the Science and Technology Project Affiliated to the Education Department of Chongqing Municipality (Grant Nos. KJQN201801217, KJQN202001214, KJQN201901226, and KJ1710247)the Fund from Chongqing Key Laboratory of Geological Environment Monitoring and Disaster Early-Warning in Three Gorges Reservoir Area (Grant Nos. ZD2020A0103 and ZD2020A0102)the Fundamental Research Funds for Chongqing Three Gorges University of China (Grant No. 19ZDPY08)。
文摘To address the restriction of fiber-optic surface plasmon resonance(SPR) sensors in the field of multi-sample detection, a novel dual-channel fiber-optic SPR sensor based on the cascade of coaxial dual-waveguide D-type structure and microsphere structure is proposed in this paper. The fiber sidepolishing technique converts the coaxial dual-waveguide fiber into a D-type one, and the evanescent wave in the ring core leaks, generating a D-type sensing region;the fiber optic fused ball push technology converts the coaxial dual waveguides into microspheres, and the stimulated cladding mode evanescent wave leaks, producing the microsphere sensing region. By injecting light into the coaxial dual-waveguide middle core alone, the sensor can realize single-stage sensing in the microsphere sensing area;it can also realize dual-channel sensing in the D-type sensing area and microsphere sensing area by injecting light into the ring core. The refractive index measurement ranges for the two channels are 1.333–1.365 and 1.375–1.405, respectively, with detection sensitivities of 981.56 nm/RIU and 4138 nm/RIU. The sensor combines wavelength division multiplexing and space division multiplexing technologies, presenting a novel research concept for multi-channel fiber SPR sensors.
基金the National Natural Science Foundation of China(Grant No.61705025)Chongqing Natural Science Foundation(Grant Nos.cstc2019jcyjmsxmX0431 and cstc2018jcyjAX0817)+2 种基金the Science and Technology Project Affiliated to the Education Department of Chongqing Municipality(Grant Nos.KJQN201801217,KJQN201901226,KJQN202001214,and KJ1710247)Chongqing Key Laboratory of Geological Environment Monitoring and Disaster Early-Warning in Three Gorges Reservoir Area(Grant Nos.ZD2020A0103 and ZD2020A0102)Fundamental Research Funds for Chongqing Three Gorges University of China(Grant No.19ZDPY08).
文摘Fiber cladding surface plasmon resonance(SPR)sensors have few structures,and a clad SPR sensor based on S-type fiber is proposed in this paper.This new type of fiber cladding SPR sensor was formed by electrofusing an S-shaped structure on the fiber to couple the light in the fiber core to the cladding.In this paper,the effects of fiber parameters on the performance of the sensor were studied by simulation and experiment.Based on the conclusion that the smaller the core diameter is,the closer the working band of the SPR resonance is to long wavelengths,and that the geometric characteristics mean that a multimode fiber can receive the fiber cladding light from a small core diameter few-mode fiber,a dual channel SPR sensor with a double S-type fiber cascade was proposed.In the refractive index detection range of 1.333–1.385refractive index units(RIU),the resonant working band of channel I is 627.66 nm–759.78 nm,with an average sensitivity of 2540.77 nm/RIU,and the resonant working band of channel II is 518.24 nm–658.2 nm,with an average sensitivity of2691.54 nm/RIU.The processing method for the S-type fiber cladding SPR sensor is simple,effectively solving the problem of this type of SPR sensor structure and the difficult realization of a dual channel.The sensor is expected to be used in the fields of medical treatment and biological analysis.
基金Funded by the Natural Science Foundation of Hubei Province(No.2022CFB861)the Wenhua College Research and Innovation Team(No.2022T01)。
文摘A novel fiber optic sensor based on hydrogel-immobilized enzyme complex was developed for the simultaneous measurement of dual-parameter,the leap from a single parameter detecting fiber optic sensor to a fiber optic sensor that can continuously detect two kinds of parameters was achieved.By controlling the temperature from high to low,the function of fiber sulfide sensor and fiber DCP sensor can be realized,so as to realize the continuous detection of dual-parameter.The different variables affecting the sensor performance were evaluated and optimized.Under the optimal conditions,the response curves,linear detection ranges,detection limits and response times of the dual-parameter sensor for testing sulfide and DCP were obtained,respectively.The sensor displays high selectivity,good repeatability and stability,which have good potentials in analyzing sulfide and DCP concentration of practical water samples.
基金Project supported by the Natural Science Foundation of China (Grant Nos.62075107,61935006,62090064,and62090065)K.C.Wong Magna Fund in Ningbo University。
文摘A novel method for designing chalcogenide long-period fiber grating(LPFG) sensors based on the dual-peak resonance effect of the LPFG near the phase matching turning point(PMTP) is presented. Refractive index sensing in a high-refractive-index chalcogenide fiber is achieved with a coated thinly clad film. The dual-peak resonant characteristics near the PMTP and the refractive index sensing properties of the LPFG are analyzed first by the phase-matching condition of the LPFG. The effects of film parameters and cladding radius on the sensitivity of refractive index sensing are further discussed. The sensor is optimized by selecting the appropriate film parameters and cladding radius. Simulation results show that the ambient refractive index sensitivity of a dual-peak coated thinly clad chalcogenide LPFG at the PMTP can be 2400 nm/RIU, which is significantly higher than that of non-optimized gratings. It has great application potential in the field of chemical sensing and biosensors.
文摘Fiber Bragg grating(FBG)sensors are often used in monitoring activities and to ensure that environmental parameters satisfy industrial requirements.They offer crucial safety measures in the early detection of hazards due to their greatly reduced size,low weight,flexibility,and immunity to electromagnetic interference.These characteristics make FBGs suitable also for use in relation to the human body for in vivo measurements and long-term monitoring.In this study,recent developments are presented with regard to the utilization of these sensors to measure the so-called post-mortem interval(PMI).Such developments rely on numerical simulations based on the Matlab software and monitoring of the rectal temperature,which is one of the main parameters for estimating the PMI.First,the Matlab software is used to solve the Henssge equation for different ambient temperatures and for different body masses;then a Bragg grating sensors is used for post-mortem dating.The results and their accuracy are discussed.
基金the National Natural Science Foundation of China(Grant No.61935007).
文摘A refractive index(RI)sensor based on the surface plasmon resonance effect is proposed using a truncated cladding negative curvature fiber(TC-NCF).The influences of the TC-NCF structure parameters on the sensing performances are investigated and compared with the traditional NCF.The simulation results show that the proposed TC-NCF RI sensor has an ultra-wide detection range from 1.16 to 1.43.The maximum wavelength sensitivity reaches 12400 nm/RIU,and the corresponding R^(2)of the polynomial fitting equation is 0.9999.The maximum and minimum resolutions are 2.56×10^(-5)and 8.06×10^(-6),respectively.In addition,the maximum amplitude sensitivity can reach-379.1 RIU^(-1)when the RI is chosen as 1.43.The proposed TC-NCF RI sensor could be useful in biochemical medicine,environmental monitoring,and food safety.
文摘Refractometric fiber optic sensors have a number of applications in industry due to advantages like remote sensing ability, compact size, easy to fit, etc. A refractometric sensor contains a pair of parallel fibers and a gap between the sensor probe and reflector, wherein the liquid whose refractive index is to be measured is filled. This paper describes the importance of mathematical modeling of this sensor. Ray tracing approach is used to model the sensor mathematically. This mathematical model is generalized for any scenario which is useful to avoid tedious trial and error techniques to design the sensor prototype. Mathematical modelling is a useful tool to optimize the gap distance for a detection of refractive index of liquid. The model is developed and analyzed rigorously considering adulteration of diesel by kerosene where refractive index varies from 1.44 to 1.46. Simulation experiments are carried out to optimize the gap distance which is found to be 6.8 mm using both models. Experiments are carried out where sensor probe is fabricated and results are analyzed. It is observed that for suggested gap distance sensor output varies almost linear over the entire range.
文摘Whether in the monitoring of critically ill patients such as shock, respiratory failure, brain injury, or in major anesthesia surgeries, it is necessary to evaluate the patient’s pO<sub>2</sub> and pH. An optical fiber sensor presented is capable of monitoring the presence of oxygen partial pressure (pO<sub>2</sub>) and pH in the real-time. The sensor is based on fluorescence sensing of polymer immobilized in the oxygen/pH-sensitive membranes and covalently attached to the optical fiber probe. The design of this sensor uses LED as light source, which is an excitation light source, inducing specific wavelengths of fluorescence on the oxygen/pH-sensitive membrane. The intensity and lifetime of fluorescence are related to the pO<sub>2</sub> and pH. So the pO<sub>2</sub> and pH can be measured by the relationship between the pO<sub>2</sub>/pH values and the intensity and lifetime of fluorescence. The signal conditioning system based on DSP and STM32 was used to store and process data, and display test values. The response of the sensor for pO<sub>2</sub> and pH monitoring with nitrogen (N<sub>2</sub>) as a balancing gas in the laboratory was performed. Finally, the oxygen/pH sensing scheme presented in this work is intended for using in biological, medical and environmental applications.
基金supported by Guizhou Provincial Basic Research Program(Natural Science)(ZK[2024]574)Anshun University PhD Fund Project(No.asxybsjj202302)+1 种基金the National Synchrotron Radiation Laboratory(NSRL,Hefei,China)(No.2021-HLS-PT-004163)Shanghai Synchrotron Radiation Facility(SSRF,Shanghai,China)(No.2018-NFPS-PT-002700).
文摘Silk is widely used in the production of high-quality textiles.At the same time,the amount of silk textiles no longer in use and discarded is increasing,resulting in significant waste and pollution.This issue is of great concern in many countries where silk is used.Hydrogen peroxide as a naturally occurring compound is an important indicator of detection in both biology and the environment.This study aims to develop a composite fiber with hydrogen peroxide-sensing properties using discarded silk materials.To achieve this goal,firstly,polydopamine(PDA)was used to encapsulate the ZnFe_(2)O_(4) NPs to achieve the improvement of dispersion,and then regenerated silk fibroin(RSF)and PDA@ZnFe_(2)O_(4)/RSF hybrid fibers are prepared by wet spinning.Research has shown that PDA@ZnFe_(2)O_(4)/RSF demonstrates exceptional sensitivity,selectivity,and stability in detecting hydrogen peroxide,while maintaining high mechanical strength.Furthermore,the complete hybridization of PDA@ZnFe_(2)O_(4) with silk fibroin not only results in the combination of the durability of silk fibroin and PDA@ZnFe_(2)O_(4)’s rigidity,ensuring a reliable service life,but also makes PDA@ZnFe_(2)O_(4)/RSF exhibit excellent catalytic activity and biocompatibility.Therefore,the composite fiber exhibits exceptional mechanical properties and reliable hydrogen peroxide sensing capabilities,making it a promising material for biological and medical applications.
基金supported by the National Natural Science Foundation of China(No.51279122)the Graduate Innovation Foundation of Taiyuan University of Technology(No.2013A019)
文摘Static ice pressure affects safe operation of hydraulic structures. However, current detection methods are hindered by the following limitations: poor real-time performance and errors owing to the partial pressure of the surrounding wall on traditional electrical resistance strain bellow pressure sensors. We developed a fiber optic sensor with a special pressure bellow to monitor the static ice pressure on hydraulic structures and used the sensor to measure static pressure in laboratory ice growth and melting tests from -30℃ to 5℃. The sensor resolution is 0.02 kPa and its sensitivity is 2.74 × 10-4/kPa. The experiments suggest that the static ice pressure peaks twice during ice growth and melting. The first peak appears when the ice temperature drops to -15℃ owing to the liquid water to solid ice transition. The second peak appears at 0℃ owing to the thermal expansion of the ice during ice melting. The novel fiber optic sensor exhibits stable performance, high resolution, and high sensitivity and it can be used to monitor the static ice pressure during ice growth and melting.
文摘The plasma resonance fiber optic sensor has a research values in theory and is widely used in engineering because of its simple structure and high sensitivity. It is a simple and sensitive method to measure the refractive index with optical fiber plasma wave. We make use of this characteristic to manufacture the plasma resonance fiber optic sensor which can detect the cure of epoxy compo site. We study the method of testing the solutions which have different refractive index with plasma resonance fiber optic sensor. A fiber optic sensing probe which has reliable performance and convenient operation for detecting the refractive index has been designed. The system for detecting the solution refractive index is developed and used to measure the refractive index of epoxy during the different phases in the cure process. Result shows that this system is credible and stable, the parameters tested are in accord with the facts.
文摘The distributed strain sensor has significant application in real time measurement of strain status for large and important engineering structures such as aircraft, bridge and dam. In this paper, a quasi distributed optical fiber strain sensor system is set up using optical time domain reflect technique. The local strain sensors based on a novel microbend configuration are designed and applied to measure local strains along the optical fiber. As the result of the experimental research, the microbend sensors show high sensitivity, good linearity and repeatability in certain operation range.
文摘This paper presents an optical sensor technique used in the damage evaluation which is formed by structurally integrated fiber optic reticulate sensors embedded in the composite materials. The fibers are processed by chemical method and their outsides are peeled to form particles of irregular distribution and they differ in size, so the slight disturbance range of stochastic wall are formed in fibers. According to the characteristics of power loss of waveguide mode caused by slight disturbance of stochastic wall and radiative mode transmission, the range of slight disturbance of stochastic wall may be served as the sensitive range of the sensor. On the basis of theory of slight disturbance of stochastic wall of planar optical waveguide, the relation between the corrosion time and the opposite power loss by experiments is investigated. In this paper, the measurement results of object of SIFORS are also presented. The results show that the optical sensor technique may be used in the damage evaluation of an aircraft.
文摘A self referenced fiber optic refractive index sensor is developed to measure quantitative cure extent of epoxy. In case the sensor is applied to in situ cure monitoring of epoxy composites, each sensor embedded in different location within the structure is self referenced and can be normalized to a common scale. Therefore, the real time comparative of each sensor’s output becomes possible and variations in the extent of cure at different locations can be monitored. The developed sensor was used to monitor the isothermal cure of an epoxy system. The output of the sensor was compared with the results of the differential scanning calorimetry (DSC). The self referencing function of the sensor is confirmed.
基金supported by the EU Horizon 2020 through project ETEXWELD-H2020-MSCA-RISE-2014(Grant No.644268)The University of Manchester through UMRI project“Graphene-Smart Textiles E-Healthcare Network”(AA14512)National Natural Science Foundation of China(No.22075046).
文摘Wearable strain sensors are arousing increasing research interests in recent years on account of their potentials in motion detection,personal and public healthcare,future entertainment,man-machine interaction,artificial intelligence,and so forth.Much research has focused on fiber-based sensors due to the appealing performance of fibers,including processing flexibility,wearing comfortability,outstanding lifetime and serviceability,low-cost and large-scale capacity.Herein,we review the latest advances in functionalization and device fabrication of fiber materials toward applications in fiber-based wearable strain sensors.We describe the approaches for preparing conductive fibers such as spinning,surface modification,and structural transformation.We also introduce the fabrication and sensing mechanisms of state-of-the-art sensors and analyze their merits and demerits.The applications toward motion detection,healthcare,man-machine interaction,future entertainment,and multifunctional sensing are summarized with typical examples.We finally critically analyze tough challenges and future remarks of fiber-based strain sensors,aiming to implement them in real applications.
基金Project supported by the Major Projects of the National Natural Science Foundation of China(Grant No.61290315)the National Natural Science Foundation of China(Grant No.61340057)the Special Program of the National Modern Service Industrial Development Foundation of China(Grant No.[2012]14)
文摘We propose a side-core holey fiber (SCHF)-based surface plasmon resonance (SPR) sensor to achieve high refractive index (RI) sensitivity. The SCHF structure can facilitate analyte filling and enhance the overlapping area of the core mode and surface plasmon polariton (SPP) mode. The coupling properties of the sensor are analyzed by numerical simulation. The maximum sensitivity of 5000 nm/RIU in an RI range of 1.33-1.44, and the average sensitivity of 9295 nm/RIU in an RI range from 1.44 to 1.54 can be obtained.