An abundance of data from seismic and geodetic monitoring has provided new insight into dyke propagation and emplacement mechanisms.These studies show that faulting and fracturing is part of the magma
Refined 3D modeling of mine slopes is pivotal for precise prediction of geological hazards.Aiming at the inadequacy of existing single modeling methods in comprehensively representing the overall and localized charact...Refined 3D modeling of mine slopes is pivotal for precise prediction of geological hazards.Aiming at the inadequacy of existing single modeling methods in comprehensively representing the overall and localized characteristics of mining slopes,this study introduces a new method that fuses model data from Unmanned aerial vehicles(UAV)tilt photogrammetry and 3D laser scanning through a data alignment algorithm based on control points.First,the mini batch K-Medoids algorithm is utilized to cluster the point cloud data from ground 3D laser scanning.Then,the elbow rule is applied to determine the optimal cluster number(K0),and the feature points are extracted.Next,the nearest neighbor point algorithm is employed to match the feature points obtained from UAV tilt photogrammetry,and the internal point coordinates are adjusted through the distanceweighted average to construct a 3D model.Finally,by integrating an engineering case study,the K0 value is determined to be 8,with a matching accuracy between the two model datasets ranging from 0.0669 to 1.0373 mm.Therefore,compared with the modeling method utilizing K-medoids clustering algorithm,the new modeling method significantly enhances the computational efficiency,the accuracy of selecting the optimal number of feature points in 3D laser scanning,and the precision of the 3D model derived from UAV tilt photogrammetry.This method provides a research foundation for constructing mine slope model.展开更多
In this paper,we use multimode GNSS instead of single GPS constellation to resolve the three exterior line elements of each image.The principles of differential GNSS positioning and GNSSsupported aerial triangulation(...In this paper,we use multimode GNSS instead of single GPS constellation to resolve the three exterior line elements of each image.The principles of differential GNSS positioning and GNSSsupported aerial triangulation(AT)are presented and an implementation case is demonstrated.With multi-constellation system,the number of visible satellites is significantly increased and the geometry distribution of the satellites is well improved.The positioning accuracy and robustness are therefore getting better compared to GPS positioning.Experimental results show that differential GNSS has remarkable increment on the integer rate of ambiguity solution when GPS has few number and low elevation angle of satellites.The combined AT adjustment of GNSS resolution and 10 ground control points(GCPs)achieve the horizontal accuracy of±18 cm and vertical accuracy of±23 cm for the check points,which are comparable with traditional bundle adjustment with dense GCPs and better than GPS-supported AT.The achieved accuracy also satisfies the requirement for 1:500 topographic maps with the bonus of 84%GCPs eliminated.In conclusion,GNSS-supported AT is of feasibility and superiority for large scale Unmanned Aerial Vehicle-based photogrammetry.展开更多
文摘An abundance of data from seismic and geodetic monitoring has provided new insight into dyke propagation and emplacement mechanisms.These studies show that faulting and fracturing is part of the magma
基金funded by National Natural Science Foundation of China(Grant Nos.42272333,42277147).
文摘Refined 3D modeling of mine slopes is pivotal for precise prediction of geological hazards.Aiming at the inadequacy of existing single modeling methods in comprehensively representing the overall and localized characteristics of mining slopes,this study introduces a new method that fuses model data from Unmanned aerial vehicles(UAV)tilt photogrammetry and 3D laser scanning through a data alignment algorithm based on control points.First,the mini batch K-Medoids algorithm is utilized to cluster the point cloud data from ground 3D laser scanning.Then,the elbow rule is applied to determine the optimal cluster number(K0),and the feature points are extracted.Next,the nearest neighbor point algorithm is employed to match the feature points obtained from UAV tilt photogrammetry,and the internal point coordinates are adjusted through the distanceweighted average to construct a 3D model.Finally,by integrating an engineering case study,the K0 value is determined to be 8,with a matching accuracy between the two model datasets ranging from 0.0669 to 1.0373 mm.Therefore,compared with the modeling method utilizing K-medoids clustering algorithm,the new modeling method significantly enhances the computational efficiency,the accuracy of selecting the optimal number of feature points in 3D laser scanning,and the precision of the 3D model derived from UAV tilt photogrammetry.This method provides a research foundation for constructing mine slope model.
基金This work was supported by the Chongqing Research Program of Basic Research and Frontier Technology[grant number cstc2016jcyjA0300]the National Special Fund for Surveying and Mapping Geographic Information Scientific Research in the Public Welfare of China[grant number 201412015].
文摘In this paper,we use multimode GNSS instead of single GPS constellation to resolve the three exterior line elements of each image.The principles of differential GNSS positioning and GNSSsupported aerial triangulation(AT)are presented and an implementation case is demonstrated.With multi-constellation system,the number of visible satellites is significantly increased and the geometry distribution of the satellites is well improved.The positioning accuracy and robustness are therefore getting better compared to GPS positioning.Experimental results show that differential GNSS has remarkable increment on the integer rate of ambiguity solution when GPS has few number and low elevation angle of satellites.The combined AT adjustment of GNSS resolution and 10 ground control points(GCPs)achieve the horizontal accuracy of±18 cm and vertical accuracy of±23 cm for the check points,which are comparable with traditional bundle adjustment with dense GCPs and better than GPS-supported AT.The achieved accuracy also satisfies the requirement for 1:500 topographic maps with the bonus of 84%GCPs eliminated.In conclusion,GNSS-supported AT is of feasibility and superiority for large scale Unmanned Aerial Vehicle-based photogrammetry.