A novel hollow star-shaped chiral metamaterial(SCM)is proposed by incorporating chiral structural properties into the standard hollow star-shaped metamaterial,exhibiting a wide band gap over 1500 Hz.To broaden the ban...A novel hollow star-shaped chiral metamaterial(SCM)is proposed by incorporating chiral structural properties into the standard hollow star-shaped metamaterial,exhibiting a wide band gap over 1500 Hz.To broaden the band gap,solid single-phase and two-phase SCMs are designed and simulated,which produce two ultra-wide band gaps(approximately 5116 Hz and 6027 Hz,respectively).The main reason for the formation of the ultra-wide band gap is that the rotational vibration of the concave star of two novel SCMs drains the energy of an elastic wave.The impacts of the concave angle of a single-phase SCM and the resonator radius of a two-phase SCM on the band gaps are studied.Decreasing the concave angle leads to an increase in the width of the widest band gap,and the width of the widest band gap increases as the resonator radius of the two-phase SCM increases.Additionally,the study on elastic wave propagation characteristics involves analyzing frequency dispersion surfaces,wave propagation directions,group velocities,and phase velocities.Ultimately,the analysis focuses on the transmission properties of finite periodic structures.The solid single-phase SCM achieves a maximum vibration attenuation over 800,while the width of the band gap is smaller than that of the two-phase SCM.Both metamaterials exhibit high vibration attenuation capabilities,which can be used in wideband vibration reduction to satisfy the requirement of ultra-wide frequencies.展开更多
In this paper, a compact coplanar epsilon.negative(ENG) antenna is proposed with ultra.wide operation band and small size of 18×11.5 mm2. The proposed antenna is designed based on a coplanar.waveguide(CPW) feedin...In this paper, a compact coplanar epsilon.negative(ENG) antenna is proposed with ultra.wide operation band and small size of 18×11.5 mm2. The proposed antenna is designed based on a coplanar.waveguide(CPW) feeding antenna, and thus the via.free structure is employed to realize the ENG unit cell, which is convenient to tune the frequency of zeroth.order resonance(ZOR) and extends the ZOR bandwidth. The high.order resonant frequencies are achieved and mainly determined by the separate slots that are located between the radiating patch and the ground plane. Adding the left.handed inductance between the radiating patch and ground has slight impact on the high.order resonant frequencies, and then the ultra.wide band is achieved by merging the ZOR bandwidth with the high.order resonant bandwidths. The ground plane primarily works as a matching network for the proposed antenna. Although it generates a low.frequency resonance, the performance is undesirable due to the impedance mismatching. The measured results show that the reflection coefficient, |S11| <.10 d B, is in a wide frequency range from 5.25 to 13 GHz, which covers the upper operation band of UWB communication. Also, the antenna contains relatively stable gains and omni.directional radiation patterns.展开更多
The Peak to Average power Ratio (PAR) of a Multi-Band Orthogonal Frequency-Division Multiplexing (MB-OFDM) Ultra-Wide Band (UWB) signals can be substantially larger than that of single carrier or carrier-less ultra-wi...The Peak to Average power Ratio (PAR) of a Multi-Band Orthogonal Frequency-Division Multiplexing (MB-OFDM) Ultra-Wide Band (UWB) signals can be substantially larger than that of single carrier or carrier-less ultra-wideband signals. In this letter, a novel PAR reduction scheme for the MB-OFDM UWB system based on spreading and interleaving is proposed. By spreading the coded bits over each subcarrier in corresponding band and interleaving the spread symbols across all bands, the PAR statistics of the MB-OFDM signals can be improved and the PAR is reduced obviously. In the PAR reduction scheme, there is no loss in transmission data rate or Bit Error Rate (BER) performance decreasing. Since the spreading and interleaving operation are implemented by unitary Hadamard sequences and used for an approach to provide the robustness of the UWB system to narrowband interference, there is no additional implementation burden. Simulation results show that the investigated scheme gives the PAR reduction of 3dB compared with that of the original MB-OFDM signals.展开更多
The modern landmine's electronic fuse is susceptible to strong interference or can even be damaged by the ultra-wide band electromagnetic pulse(UWB-EMP). The finite-difference time-domain(FDTD) method in lossy me...The modern landmine's electronic fuse is susceptible to strong interference or can even be damaged by the ultra-wide band electromagnetic pulse(UWB-EMP). The finite-difference time-domain(FDTD) method in lossy media with cylindrical coordinates is used to study the interactions of the UWB-EMP with the landmine. First, the coupling of UWB-EMP into the landmine shielding shell through an aperture is numerically simulated. Second, the coupled electromagnetic field of mine shells made of different shielding materials and with apertures of different sizes is plotted. Third, the aperture coupling laws of UWB-EMP into shells are analyzed and categorized. Such an algorithm is capable of effectively preventing ladder similar errors, and consequently improving the calculation precision, and in addition to adopting the message passing interface(MPI) parallel method to divide the total calculating range into more sub-ranges, the overall calculating efficiency is greatly increased. These calculations are surely a constructive reference for modern landmine design against electromagnetic damage.展开更多
To solve the precision self-positioning problem for mobile robot,a positioning program based on ultra-wideband technology was proposed. Ultra-wideband pulse has very high bandwidth; ranging accuracy can achieve centim...To solve the precision self-positioning problem for mobile robot,a positioning program based on ultra-wideband technology was proposed. Ultra-wideband pulse has very high bandwidth; ranging accuracy can achieve centimeter-level theoretically. The mobile robot obtained the distance to the reference node by sending ultra-wideband pulse. According to the geometric relations among the references and the robot,establish equations to calculate the position coordinates. Then Kalman filter algorithm was applied for mobile robot tracking. Simulation results show that robot positioning and tracking based on ultra-wideband technology can achieve indoor and outdoor seamless docking.展开更多
Theoretical calculations predict transition frequencies in the terahertz range for the field-effect transistors based on carbon nanotubes, and this shows their suitability for being used in high frequency applications...Theoretical calculations predict transition frequencies in the terahertz range for the field-effect transistors based on carbon nanotubes, and this shows their suitability for being used in high frequency applications. In this paper, we have designed a field-effect transistor based on carbon nanotube with high transition frequency suitable for ultra-wide band applications. We did this by optimizing nanotube diameter, gate insulator thickness and dielectric constant. As a result, we achieved the transition frequency about 7.45 THz. The environment of open source software FETToy is used to simulate the device. Also a suitable model for calculating the transition frequency is presented.展开更多
The evaluation of System Performance of UWB (ultra-wide band) jointing in MC (multi-carrier) signaling in correlated environments is presented in the report. The correlated Nakagami-m statistical distribution for the ...The evaluation of System Performance of UWB (ultra-wide band) jointing in MC (multi-carrier) signaling in correlated environments is presented in the report. The correlated Nakagami-m statistical distribution for the multipath fading model is assumed in this scenario. In fact to establish the model for analyzing in this article is using MC-CDMA (multi-carrier code-division multiple-access) system characterization combined with a UWB scheme. The average BER (bit error rate) is calculated and compared to a special case of previously published results. Studied results from this paper can be implied to approve the system performance for a UWB system combined with a MC-CDMA wireless communication system. It is worth noting that the Nakagami-m distributed fading parameter significantly dominates UWB system performance when it cooperates with MC signaling under a fading environment. Finally, it is worthy of noting that when the SNR (signal-to-noise ratio) at system’s receiver reaches a preset high threshold value, the parameter of power decay ratio effect could be not included.展开更多
Using an improved particle swarm optimization algorithm(IPSO)to drive a transfer matrix method,a nonreciprocal absorber with an ultrawide absorption bandwidth and angular insensitivity is realized in plasma-embedded p...Using an improved particle swarm optimization algorithm(IPSO)to drive a transfer matrix method,a nonreciprocal absorber with an ultrawide absorption bandwidth and angular insensitivity is realized in plasma-embedded photonic crystals arranged in a structure composed of periodic and quasi-periodic sequences on a normalized scale.The effective dielectric function,which determines the absorption of the plasma,is subject to the basic parameters of the plasma,causing the absorption of the proposed absorber to be easily modulated by these parameters.Compared with other quasi-periodic sequences,the Octonacci sequence is superior both in relative bandwidth and absolute bandwidth.Under further optimization using IPSO with 14 parameters set to be optimized,the absorption characteristics of the proposed structure with different numbers of layers of the smallest structure unit N are shown and discussed.IPSO is also used to address angular insensitive nonreciprocal ultrawide bandwidth absorption,and the optimized result shows excellent unidirectional absorbability and angular insensitivity of the proposed structure.The impacts of the sequence number of quasi-periodic sequence M and collision frequency of plasma1ν1 to absorption in the angle domain and frequency domain are investigated.Additionally,the impedance match theory and the interference field theory are introduced to express the findings of the algorithm.展开更多
A small-sized, low-profile, and planar dual band antenna for Bluetooth (2.4 - 2.484 GHz) and ultra-wideband (UWB) (3.1 - 10.6 GHz) with multi-band notched antennas is presented. Two antennas A and B with different typ...A small-sized, low-profile, and planar dual band antenna for Bluetooth (2.4 - 2.484 GHz) and ultra-wideband (UWB) (3.1 - 10.6 GHz) with multi-band notched antennas is presented. Two antennas A and B with different types of slots are used to obtain tri-band notched characteristic. In antenna A notched bands, 5 - 6 GHz for WLAN, and 3.3 - 4 GHz for WiMAX, are achieved using a U-slot in ground structure and in the radiating patch. In antenna B two notched bands at 3.3 - 4 GHz, for WiMAX and 7.2 GHz for C-band satellite communication systems are achieved by using a U-slot in ground structure and a H-shaped slot in the radiating patch. The radiation characteristics of the two antennas are calculated using a commercial EM simulator based on Finite Element Method (FEM) and the Finite Integration Technique (FIT). The two antennas show acceptable gain flatness with stable omnidirectional radiation patterns across the integrated Bluetooth and UWB bands.展开更多
The Ultra-WideBand(UWB) technique, which offers good energy efficiency, flexible data rate, and high ranging accuracy, has recently been recognized as a revived wireless technology for short distance communication.Thi...The Ultra-WideBand(UWB) technique, which offers good energy efficiency, flexible data rate, and high ranging accuracy, has recently been recognized as a revived wireless technology for short distance communication.This paper presents a brief overview of two UWB techniques, covering Impulse-Radio UWB(IR-UWB) and FrequencyModulation UWB(FM-UWB) methods. The link margin enhancement technique, Very-WideBand(VWB), and power consumption reducing technique, chirp UWB, are also introduced. Then, several potential applications of IR-UWB with transceiver architectures are addressed, including high data rate proximity communication and secure wireless connectivity. With fine-ranging and energy-efficient communication features, the UWB wireless technology is highly promising for secure mobile Internet of Things(IoT) applications.展开更多
From an analysis of the status of coal mine underground wireless communication, the application of UWB wireless communication system to underground coal mine is proposed. The basic composition of an UWB communication ...From an analysis of the status of coal mine underground wireless communication, the application of UWB wireless communication system to underground coal mine is proposed. The basic composition of an UWB communication system and application in underground coal mines are introduced. The analyses show that, because of the transmission power being non-limitted in underground coal mines, the use of UWB in coal mines cannot only realize wireless access services of short distance high rate application for transmission of video monitoring signals, but also realize wireless access services of long distance low rate applications for mobile telephones in underground coal mines and parameters of working conditions monitoring, etc. It is emphasized on the simulation of a TH-PPM UWB communication system with traditional underground broadband model and ground CM1, CM3 model. It is shown that the traditional underground broadband model and ground CM1, CM3 models are not applicable to the UWB communication system in underground coal mines. It is necessary to conduct research on the propagation characteristics of UWB in coal mine tunnels, given the characteristics of the underground environment and to find the appropriate UWB model for underground coal mines.展开更多
Based on the high positioning accuracy,low cost and low-power consumption,the ultra-wide-band(UWB)is an ideal solution for indoor unmanned aerial vehicle(UAV)localization and navigation.However,the UWB signals are eas...Based on the high positioning accuracy,low cost and low-power consumption,the ultra-wide-band(UWB)is an ideal solution for indoor unmanned aerial vehicle(UAV)localization and navigation.However,the UWB signals are easy to be blocked or reflected by obstacles such as walls and furniture.A resilient tightly-coupled inertial navigation system(INS)/UWB integration is proposed and implemented for indoor UAV navigation in this paper.A factor graph optimization(FGO)method enhanced by resilient stochastic model is established to cope with the indoor challenging scenarios.To deal with the impact of UWB non-line-of-sight(NLOS)signals and noise uncertainty,the conventional neural net-works(CNNs)are introduced into the stochastic modelling to improve the resilience and reliability of the integration.Based on the status that the UWB features are limited,a‘two-phase'CNNs structure was designed and implemented:one for signal classification and the other one for measurement noise prediction.The proposed resilient FGO method is tested on flighting UAV platform under actual indoor challenging scenario.Compared to classical FGO method,the overall positioning errors can be decreased from about 0.60 m to centimeter-level under signal block and reflection scenarios.The superiority of resilient FGO which effectively verified in constrained environment is pretty important for positioning accuracy and integrity for indoor navigation task.展开更多
This paper presents a compact Multiple Input Multiple Output(MIMO)antenna with WLAN band notch for Ultra-Wideband(UWB)applications.The antenna is designed on 0.8mmthick low-cost FR-4 substrate having a compact size of...This paper presents a compact Multiple Input Multiple Output(MIMO)antenna with WLAN band notch for Ultra-Wideband(UWB)applications.The antenna is designed on 0.8mmthick low-cost FR-4 substrate having a compact size of 22mm×30 mm.The proposed antenna comprises of two monopole patches on the top layer of substrate while having a shared ground on its bottom layer.The mutual coupling between adjacent patches has been reduced by using a novel stub with shared ground structure.The stub consists of complementary rectangular slots that disturb the surface current direction and thus result in reducing mutual coupling between two ports.A slot is etched in the radiating patch for WLAN band notch.The slot is used to suppress frequencies ranging from 5.1 to 5.9 GHz.The results show that the proposed antenna has a very good impedance bandwidth of|S11|<−10 dB within the frequency band from 3.1–14 GHz.A low mutual coupling of less than−23 dB is achieved within the entire UWB band.Furthermore,the antenna has a peak gain of 5.8 dB,low ECC<0.002 and high Diversity Gain(DG>9.98).展开更多
Mainly due to its implementation simplicity, the non-coherent Ultra-Wide Band (UWB) receiver is attractive for lower data rate applications, which gains much attention again in recent years. In this paper, a General L...Mainly due to its implementation simplicity, the non-coherent Ultra-Wide Band (UWB) receiver is attractive for lower data rate applications, which gains much attention again in recent years. In this paper, a General Likelihood Ratio Test (GLRT) based non-coherent receiver on UWB Pulse-Position-Modulation (PPM) signal in multipath channels is derived, and a novel structure is proposed as well. Subsequently, the closed-form expressions of asymptotic error-rate performance related to the non-coherent receiver are also derived and verified.展开更多
This paper introduces a human gesture recognition algorithm using an impulse radio ultra-wide- band (IR-UWB) radar sensor. Human gesture recognition has been one of the hottest research topics for quite a long time. M...This paper introduces a human gesture recognition algorithm using an impulse radio ultra-wide- band (IR-UWB) radar sensor. Human gesture recognition has been one of the hottest research topics for quite a long time. Many gesture recognition algorithms or systems using other sensors have been proposed such as using cameras, RFID tags and so on. Among which gesture recognition systems using cameras have been extensively studied in past years and widely used in practical. While it might show some deficiencies in some cases. For example, the users might not like to be filmed by cameras considering their privacies. Besides, it might not work well in very dark environments. While RFID tags could be inconvenient to many people and are likely to be lost. Our gesture recognition algorithm uses IR-UWB radar sensor which has pretty high resolution in ranging and adjustable gesture recognition range, meanwhile, does not have problems in privacy issues or darkness. In this paper, the gesture recognition algorithm is based on the moving direction and distance change of the human hand and the change of the frontal surface area of hand towards radar sensor. By combining these changes while doing gestures, the algorithm may recognize basically 6 kinds of hand gestures. The experimental results show that these gestures are of quite good performance. The performance analysis from experiments is also given.展开更多
A deconvolution algorithm is proposed to account for the distortions of impulse shape introduced by propagation process. By finding the best correlation of the received waveform with the multiple templates, the number...A deconvolution algorithm is proposed to account for the distortions of impulse shape introduced by propagation process. By finding the best correlation of the received waveform with the multiple templates, the number of multipath components is reduced as the result of eliminating the "phantom paths", and the captured energy increases. Moreover, it needs only a single reference measurement in real measurement environment (do not need the anechoic chamber), which by far simplifies the templates acquiring procedure.展开更多
A simplified closed-form analytic solution for UWB impulse signal transmitting through a finitely conducting slab is proposed. The approach first requires evaluating the impulse response of the slab and then convolvin...A simplified closed-form analytic solution for UWB impulse signal transmitting through a finitely conducting slab is proposed. The approach first requires evaluating the impulse response of the slab and then convolving it with the specified incident field waveform. To obtain the impulsive transmitting field, either for vertical or horizontal polarization, approximations to the refraction coefficients and propagation loss are made, which can be proved to be accurate enough, comparing with their frequency domain solutions. Thereby, it permits simplified closed-form expressions in the time domain for both terms. The resulting transient response for the transmitting impulse field is then given by convolution of the time domMn refraction coefficients and time domain propagation loss. A numerical example of an incident monocyele transmitting through a slab using this technique, is presented, to illustrate the effective use of the method.展开更多
This research contributes to small satellite system development based on electromagnetic modeling and an integrated meta-materials antenna networks design for multimedia transmission contents.It includes an adaptive n...This research contributes to small satellite system development based on electromagnetic modeling and an integrated meta-materials antenna networks design for multimedia transmission contents.It includes an adaptive nonsingular mode tracking control design for small satellites systems using fuzzy waveless antenna networks.By analyzing and modeling based on electromagnetic methods,propagation properties of guided waves from metallic structures with simple or complex forms charge partially or entirely by anisotropic materials such as metamaterials.We propose a system control rule to omit uncertainties,including the inevitable approximation errors resulting from the finite number of fuzzy signal power value basis functions in antenna networks.Moreover,both the stability and the tracking performance of the closed-loop robotic system are experimentally validated.The research lies within the scope of the improvement of speed,effectiveness,and precision of numerical methods applied to electro-magnetic modeling with complex structures,essentially rectangular metallic waveguides filled with isotropic or anisotropic metamaterials.Three axes of our research are presented:waveguides,filters,and antennas.The proposed controller does not require prior knowledge about the dynamics of the fuzzy system controller for antenna networks or the offline learning phase.In addition,this work contributes to solving the problem of non-visibility stations to ensure data transmission in wireless networks.The proposed solution maximizes inter-connection by using a fuzzy controlled antenna network,and the novelty guarantees nonlimited interconnection in wireless networks compared to traditional methods.展开更多
To investigate the low-complex and high-precise tracking method, a novel single link tracking scheme based on UWB localization is proposed. Two antenna arrays are settled at the fixed station (FS) to receive the UWB...To investigate the low-complex and high-precise tracking method, a novel single link tracking scheme based on UWB localization is proposed. Two antenna arrays are settled at the fixed station (FS) to receive the UWB signal from mobile terminal (MT), one FS is enough for the proposed scheme to track the MT. The UWB multipath detection algorithm for time difference of arrival (TDOA) estimation is presented and TDOA is thus adopted to estimate angle of arrival (AOA), avoiding the synchronization and complicated beamforming for AOA. The impacts of localization errors, concluding multipath and non-line-of-sight (NLOS) errors are simulated for the proposed track scheme. It is demonstrated that the simulation curve can match the real target moving, and the feasibility of the proposed scheme is proved.展开更多
基金supported by the National Natural Science Foundation of China(Nos.12372019,12072222,12132010,12021002,and 11991032)the Open Projects of State Key Laboratory for Strength and Structural Integrity of China(No.ASSIKFJJ202303002)+1 种基金the State Key Laboratory of Mechanical Behavior and System Safety of Traffic Engineering Structures of China(No.SKLTESKF1901)the Aeronautical Science Foundation of China(No.ASFC-201915048001)。
文摘A novel hollow star-shaped chiral metamaterial(SCM)is proposed by incorporating chiral structural properties into the standard hollow star-shaped metamaterial,exhibiting a wide band gap over 1500 Hz.To broaden the band gap,solid single-phase and two-phase SCMs are designed and simulated,which produce two ultra-wide band gaps(approximately 5116 Hz and 6027 Hz,respectively).The main reason for the formation of the ultra-wide band gap is that the rotational vibration of the concave star of two novel SCMs drains the energy of an elastic wave.The impacts of the concave angle of a single-phase SCM and the resonator radius of a two-phase SCM on the band gaps are studied.Decreasing the concave angle leads to an increase in the width of the widest band gap,and the width of the widest band gap increases as the resonator radius of the two-phase SCM increases.Additionally,the study on elastic wave propagation characteristics involves analyzing frequency dispersion surfaces,wave propagation directions,group velocities,and phase velocities.Ultimately,the analysis focuses on the transmission properties of finite periodic structures.The solid single-phase SCM achieves a maximum vibration attenuation over 800,while the width of the band gap is smaller than that of the two-phase SCM.Both metamaterials exhibit high vibration attenuation capabilities,which can be used in wideband vibration reduction to satisfy the requirement of ultra-wide frequencies.
基金supported by the National Natural Science Foundation of China (NNSF) under Grant 61531016National Natural Science Foundation of China (NNSF) under Grant 61271090+1 种基金Sichuan province science and technology support project under Grant 2016GZ0059Sichuan province science and technology support project under Grant 2017GZ0110
文摘In this paper, a compact coplanar epsilon.negative(ENG) antenna is proposed with ultra.wide operation band and small size of 18×11.5 mm2. The proposed antenna is designed based on a coplanar.waveguide(CPW) feeding antenna, and thus the via.free structure is employed to realize the ENG unit cell, which is convenient to tune the frequency of zeroth.order resonance(ZOR) and extends the ZOR bandwidth. The high.order resonant frequencies are achieved and mainly determined by the separate slots that are located between the radiating patch and the ground plane. Adding the left.handed inductance between the radiating patch and ground has slight impact on the high.order resonant frequencies, and then the ultra.wide band is achieved by merging the ZOR bandwidth with the high.order resonant bandwidths. The ground plane primarily works as a matching network for the proposed antenna. Although it generates a low.frequency resonance, the performance is undesirable due to the impedance mismatching. The measured results show that the reflection coefficient, |S11| <.10 d B, is in a wide frequency range from 5.25 to 13 GHz, which covers the upper operation band of UWB communication. Also, the antenna contains relatively stable gains and omni.directional radiation patterns.
基金Supported by the National 863 High Technology Research Program of China (N0.2005AA123320)Universities Natural Science Research Project of Jiangsu Province (No.05KJB510101).
文摘The Peak to Average power Ratio (PAR) of a Multi-Band Orthogonal Frequency-Division Multiplexing (MB-OFDM) Ultra-Wide Band (UWB) signals can be substantially larger than that of single carrier or carrier-less ultra-wideband signals. In this letter, a novel PAR reduction scheme for the MB-OFDM UWB system based on spreading and interleaving is proposed. By spreading the coded bits over each subcarrier in corresponding band and interleaving the spread symbols across all bands, the PAR statistics of the MB-OFDM signals can be improved and the PAR is reduced obviously. In the PAR reduction scheme, there is no loss in transmission data rate or Bit Error Rate (BER) performance decreasing. Since the spreading and interleaving operation are implemented by unitary Hadamard sequences and used for an approach to provide the robustness of the UWB system to narrowband interference, there is no additional implementation burden. Simulation results show that the investigated scheme gives the PAR reduction of 3dB compared with that of the original MB-OFDM signals.
基金Project supported by the Postdoctoral Science Foundation of China(Grant No.2014M552610)
文摘The modern landmine's electronic fuse is susceptible to strong interference or can even be damaged by the ultra-wide band electromagnetic pulse(UWB-EMP). The finite-difference time-domain(FDTD) method in lossy media with cylindrical coordinates is used to study the interactions of the UWB-EMP with the landmine. First, the coupling of UWB-EMP into the landmine shielding shell through an aperture is numerically simulated. Second, the coupled electromagnetic field of mine shells made of different shielding materials and with apertures of different sizes is plotted. Third, the aperture coupling laws of UWB-EMP into shells are analyzed and categorized. Such an algorithm is capable of effectively preventing ladder similar errors, and consequently improving the calculation precision, and in addition to adopting the message passing interface(MPI) parallel method to divide the total calculating range into more sub-ranges, the overall calculating efficiency is greatly increased. These calculations are surely a constructive reference for modern landmine design against electromagnetic damage.
基金High Technology Research and Development Program(863program) of China (No.2007AA041604)
文摘To solve the precision self-positioning problem for mobile robot,a positioning program based on ultra-wideband technology was proposed. Ultra-wideband pulse has very high bandwidth; ranging accuracy can achieve centimeter-level theoretically. The mobile robot obtained the distance to the reference node by sending ultra-wideband pulse. According to the geometric relations among the references and the robot,establish equations to calculate the position coordinates. Then Kalman filter algorithm was applied for mobile robot tracking. Simulation results show that robot positioning and tracking based on ultra-wideband technology can achieve indoor and outdoor seamless docking.
文摘Theoretical calculations predict transition frequencies in the terahertz range for the field-effect transistors based on carbon nanotubes, and this shows their suitability for being used in high frequency applications. In this paper, we have designed a field-effect transistor based on carbon nanotube with high transition frequency suitable for ultra-wide band applications. We did this by optimizing nanotube diameter, gate insulator thickness and dielectric constant. As a result, we achieved the transition frequency about 7.45 THz. The environment of open source software FETToy is used to simulate the device. Also a suitable model for calculating the transition frequency is presented.
文摘The evaluation of System Performance of UWB (ultra-wide band) jointing in MC (multi-carrier) signaling in correlated environments is presented in the report. The correlated Nakagami-m statistical distribution for the multipath fading model is assumed in this scenario. In fact to establish the model for analyzing in this article is using MC-CDMA (multi-carrier code-division multiple-access) system characterization combined with a UWB scheme. The average BER (bit error rate) is calculated and compared to a special case of previously published results. Studied results from this paper can be implied to approve the system performance for a UWB system combined with a MC-CDMA wireless communication system. It is worth noting that the Nakagami-m distributed fading parameter significantly dominates UWB system performance when it cooperates with MC signaling under a fading environment. Finally, it is worthy of noting that when the SNR (signal-to-noise ratio) at system’s receiver reaches a preset high threshold value, the parameter of power decay ratio effect could be not included.
文摘Using an improved particle swarm optimization algorithm(IPSO)to drive a transfer matrix method,a nonreciprocal absorber with an ultrawide absorption bandwidth and angular insensitivity is realized in plasma-embedded photonic crystals arranged in a structure composed of periodic and quasi-periodic sequences on a normalized scale.The effective dielectric function,which determines the absorption of the plasma,is subject to the basic parameters of the plasma,causing the absorption of the proposed absorber to be easily modulated by these parameters.Compared with other quasi-periodic sequences,the Octonacci sequence is superior both in relative bandwidth and absolute bandwidth.Under further optimization using IPSO with 14 parameters set to be optimized,the absorption characteristics of the proposed structure with different numbers of layers of the smallest structure unit N are shown and discussed.IPSO is also used to address angular insensitive nonreciprocal ultrawide bandwidth absorption,and the optimized result shows excellent unidirectional absorbability and angular insensitivity of the proposed structure.The impacts of the sequence number of quasi-periodic sequence M and collision frequency of plasma1ν1 to absorption in the angle domain and frequency domain are investigated.Additionally,the impedance match theory and the interference field theory are introduced to express the findings of the algorithm.
文摘A small-sized, low-profile, and planar dual band antenna for Bluetooth (2.4 - 2.484 GHz) and ultra-wideband (UWB) (3.1 - 10.6 GHz) with multi-band notched antennas is presented. Two antennas A and B with different types of slots are used to obtain tri-band notched characteristic. In antenna A notched bands, 5 - 6 GHz for WLAN, and 3.3 - 4 GHz for WiMAX, are achieved using a U-slot in ground structure and in the radiating patch. In antenna B two notched bands at 3.3 - 4 GHz, for WiMAX and 7.2 GHz for C-band satellite communication systems are achieved by using a U-slot in ground structure and a H-shaped slot in the radiating patch. The radiation characteristics of the two antennas are calculated using a commercial EM simulator based on Finite Element Method (FEM) and the Finite Integration Technique (FIT). The two antennas show acceptable gain flatness with stable omnidirectional radiation patterns across the integrated Bluetooth and UWB bands.
基金supported in part by the National Natural Science Foundation of China (No. 61774092)。
文摘The Ultra-WideBand(UWB) technique, which offers good energy efficiency, flexible data rate, and high ranging accuracy, has recently been recognized as a revived wireless technology for short distance communication.This paper presents a brief overview of two UWB techniques, covering Impulse-Radio UWB(IR-UWB) and FrequencyModulation UWB(FM-UWB) methods. The link margin enhancement technique, Very-WideBand(VWB), and power consumption reducing technique, chirp UWB, are also introduced. Then, several potential applications of IR-UWB with transceiver architectures are addressed, including high data rate proximity communication and secure wireless connectivity. With fine-ranging and energy-efficient communication features, the UWB wireless technology is highly promising for secure mobile Internet of Things(IoT) applications.
基金Project OC4501 supported by the Scientific Research Fund of China University of Mining & Technology
文摘From an analysis of the status of coal mine underground wireless communication, the application of UWB wireless communication system to underground coal mine is proposed. The basic composition of an UWB communication system and application in underground coal mines are introduced. The analyses show that, because of the transmission power being non-limitted in underground coal mines, the use of UWB in coal mines cannot only realize wireless access services of short distance high rate application for transmission of video monitoring signals, but also realize wireless access services of long distance low rate applications for mobile telephones in underground coal mines and parameters of working conditions monitoring, etc. It is emphasized on the simulation of a TH-PPM UWB communication system with traditional underground broadband model and ground CM1, CM3 model. It is shown that the traditional underground broadband model and ground CM1, CM3 models are not applicable to the UWB communication system in underground coal mines. It is necessary to conduct research on the propagation characteristics of UWB in coal mine tunnels, given the characteristics of the underground environment and to find the appropriate UWB model for underground coal mines.
基金National Natural Science Foundation of China(Grant No.62203111)the Open Research Fund of State Key Laboratory of Information Engineering in Surveying,Mapping and Remote Sensing,Wuhan University(Grant No.21P01)the Foundation of Key Laboratory of Micro-Inertial Instrument and Advanced Navigation Technology,Ministry of Education,China(Grant No.SEU-MIAN-202101)to provide fund for conducting experiments。
文摘Based on the high positioning accuracy,low cost and low-power consumption,the ultra-wide-band(UWB)is an ideal solution for indoor unmanned aerial vehicle(UAV)localization and navigation.However,the UWB signals are easy to be blocked or reflected by obstacles such as walls and furniture.A resilient tightly-coupled inertial navigation system(INS)/UWB integration is proposed and implemented for indoor UAV navigation in this paper.A factor graph optimization(FGO)method enhanced by resilient stochastic model is established to cope with the indoor challenging scenarios.To deal with the impact of UWB non-line-of-sight(NLOS)signals and noise uncertainty,the conventional neural net-works(CNNs)are introduced into the stochastic modelling to improve the resilience and reliability of the integration.Based on the status that the UWB features are limited,a‘two-phase'CNNs structure was designed and implemented:one for signal classification and the other one for measurement noise prediction.The proposed resilient FGO method is tested on flighting UAV platform under actual indoor challenging scenario.Compared to classical FGO method,the overall positioning errors can be decreased from about 0.60 m to centimeter-level under signal block and reflection scenarios.The superiority of resilient FGO which effectively verified in constrained environment is pretty important for positioning accuracy and integrity for indoor navigation task.
基金The authors would like to acknowledge the support from Taif University Researchers Supporting Project Number (TURSP-2020/264),Taif University,。
文摘This paper presents a compact Multiple Input Multiple Output(MIMO)antenna with WLAN band notch for Ultra-Wideband(UWB)applications.The antenna is designed on 0.8mmthick low-cost FR-4 substrate having a compact size of 22mm×30 mm.The proposed antenna comprises of two monopole patches on the top layer of substrate while having a shared ground on its bottom layer.The mutual coupling between adjacent patches has been reduced by using a novel stub with shared ground structure.The stub consists of complementary rectangular slots that disturb the surface current direction and thus result in reducing mutual coupling between two ports.A slot is etched in the radiating patch for WLAN band notch.The slot is used to suppress frequencies ranging from 5.1 to 5.9 GHz.The results show that the proposed antenna has a very good impedance bandwidth of|S11|<−10 dB within the frequency band from 3.1–14 GHz.A low mutual coupling of less than−23 dB is achieved within the entire UWB band.Furthermore,the antenna has a peak gain of 5.8 dB,low ECC<0.002 and high Diversity Gain(DG>9.98).
文摘Mainly due to its implementation simplicity, the non-coherent Ultra-Wide Band (UWB) receiver is attractive for lower data rate applications, which gains much attention again in recent years. In this paper, a General Likelihood Ratio Test (GLRT) based non-coherent receiver on UWB Pulse-Position-Modulation (PPM) signal in multipath channels is derived, and a novel structure is proposed as well. Subsequently, the closed-form expressions of asymptotic error-rate performance related to the non-coherent receiver are also derived and verified.
文摘This paper introduces a human gesture recognition algorithm using an impulse radio ultra-wide- band (IR-UWB) radar sensor. Human gesture recognition has been one of the hottest research topics for quite a long time. Many gesture recognition algorithms or systems using other sensors have been proposed such as using cameras, RFID tags and so on. Among which gesture recognition systems using cameras have been extensively studied in past years and widely used in practical. While it might show some deficiencies in some cases. For example, the users might not like to be filmed by cameras considering their privacies. Besides, it might not work well in very dark environments. While RFID tags could be inconvenient to many people and are likely to be lost. Our gesture recognition algorithm uses IR-UWB radar sensor which has pretty high resolution in ranging and adjustable gesture recognition range, meanwhile, does not have problems in privacy issues or darkness. In this paper, the gesture recognition algorithm is based on the moving direction and distance change of the human hand and the change of the frontal surface area of hand towards radar sensor. By combining these changes while doing gestures, the algorithm may recognize basically 6 kinds of hand gestures. The experimental results show that these gestures are of quite good performance. The performance analysis from experiments is also given.
基金the Key Program of the National Natural Science Foundation of China (60432040)the China Postdoctors Science Foundation (20060390792).
文摘A deconvolution algorithm is proposed to account for the distortions of impulse shape introduced by propagation process. By finding the best correlation of the received waveform with the multiple templates, the number of multipath components is reduced as the result of eliminating the "phantom paths", and the captured energy increases. Moreover, it needs only a single reference measurement in real measurement environment (do not need the anechoic chamber), which by far simplifies the templates acquiring procedure.
基金supported by the Key Program of the National Natural Science Foundation of China (60432040)the China Postdoctors Science Foundation (20060390792).
文摘A simplified closed-form analytic solution for UWB impulse signal transmitting through a finitely conducting slab is proposed. The approach first requires evaluating the impulse response of the slab and then convolving it with the specified incident field waveform. To obtain the impulsive transmitting field, either for vertical or horizontal polarization, approximations to the refraction coefficients and propagation loss are made, which can be proved to be accurate enough, comparing with their frequency domain solutions. Thereby, it permits simplified closed-form expressions in the time domain for both terms. The resulting transient response for the transmitting impulse field is then given by convolution of the time domMn refraction coefficients and time domain propagation loss. A numerical example of an incident monocyele transmitting through a slab using this technique, is presented, to illustrate the effective use of the method.
文摘This research contributes to small satellite system development based on electromagnetic modeling and an integrated meta-materials antenna networks design for multimedia transmission contents.It includes an adaptive nonsingular mode tracking control design for small satellites systems using fuzzy waveless antenna networks.By analyzing and modeling based on electromagnetic methods,propagation properties of guided waves from metallic structures with simple or complex forms charge partially or entirely by anisotropic materials such as metamaterials.We propose a system control rule to omit uncertainties,including the inevitable approximation errors resulting from the finite number of fuzzy signal power value basis functions in antenna networks.Moreover,both the stability and the tracking performance of the closed-loop robotic system are experimentally validated.The research lies within the scope of the improvement of speed,effectiveness,and precision of numerical methods applied to electro-magnetic modeling with complex structures,essentially rectangular metallic waveguides filled with isotropic or anisotropic metamaterials.Three axes of our research are presented:waveguides,filters,and antennas.The proposed controller does not require prior knowledge about the dynamics of the fuzzy system controller for antenna networks or the offline learning phase.In addition,this work contributes to solving the problem of non-visibility stations to ensure data transmission in wireless networks.The proposed solution maximizes inter-connection by using a fuzzy controlled antenna network,and the novelty guarantees nonlimited interconnection in wireless networks compared to traditional methods.
基金supported by the National Natural Science Foundation of China (60572148 60702060)
文摘To investigate the low-complex and high-precise tracking method, a novel single link tracking scheme based on UWB localization is proposed. Two antenna arrays are settled at the fixed station (FS) to receive the UWB signal from mobile terminal (MT), one FS is enough for the proposed scheme to track the MT. The UWB multipath detection algorithm for time difference of arrival (TDOA) estimation is presented and TDOA is thus adopted to estimate angle of arrival (AOA), avoiding the synchronization and complicated beamforming for AOA. The impacts of localization errors, concluding multipath and non-line-of-sight (NLOS) errors are simulated for the proposed track scheme. It is demonstrated that the simulation curve can match the real target moving, and the feasibility of the proposed scheme is proved.