This study elaborates on the effects of matrix rigidity on the high-velocity impact behaviour of UHMWPE textile composites using experimental and numerical methods.Textile composite samples were manufactured of a plai...This study elaborates on the effects of matrix rigidity on the high-velocity impact behaviour of UHMWPE textile composites using experimental and numerical methods.Textile composite samples were manufactured of a plain-weave fabric(comprising Spectra?1000 fibres)and four different matrix materials.High-velocity impact tests were conducted by launching a spherical steel projectile to strike on the prepared samples via a gas gun.The experimental results showed that the textile composites gradually changed from a membrane stretching mode to a plate bending mode as the matrix rigidity and thickness increased.The composites deformed in the membrane stretching mode had higher impact resistance and energy absorption capacity,and it was found that the average energy absorption per ply was much higher in this mode,although the number of broken yarns was smaller in the perforated samples.Moreover,the flexible matrix composites always had higher perforation resistance but larger deformation than the rigid matrix counterparts in the tested thickness and velocity range.A novel numerical modelling approach with enhanced computational efficiency was proposed to simulate textile composites in mesoscale resolution.The simulation results revealed that stress and strain development in the more rigid matrix composite was localised in the vicinity of the impact location,leading to larger local deformation and inferior perforation resistance.展开更多
By adopting a homemade extension apparatus and wide-angle X-ray diffraction(WAXD)technique,the structural evolutions of the extracted ultra-high molecular weight polyethylene(UHMWPE)fibers with different spinning draw...By adopting a homemade extension apparatus and wide-angle X-ray diffraction(WAXD)technique,the structural evolutions of the extracted ultra-high molecular weight polyethylene(UHMWPE)fibers with different spinning draw ratios were investigated during the poststretching process.Molecular chains oriented along the axis quickly at the early stage of drawing,which is quite different from the situation of drawing with solvents.The crystal regions,which have not melted at higher temperature,show stronger rigidity in the absence of solvents.Rigid characteristics show faster response to the external field.Also,the surface morphologies of fibers after poststretching are characterized by scanning electron microscopy(SEM).The lamellae stack disordered before stretching,but arranged in order along the draw direction when the draw ratios were larger than 1.展开更多
文摘This study elaborates on the effects of matrix rigidity on the high-velocity impact behaviour of UHMWPE textile composites using experimental and numerical methods.Textile composite samples were manufactured of a plain-weave fabric(comprising Spectra?1000 fibres)and four different matrix materials.High-velocity impact tests were conducted by launching a spherical steel projectile to strike on the prepared samples via a gas gun.The experimental results showed that the textile composites gradually changed from a membrane stretching mode to a plate bending mode as the matrix rigidity and thickness increased.The composites deformed in the membrane stretching mode had higher impact resistance and energy absorption capacity,and it was found that the average energy absorption per ply was much higher in this mode,although the number of broken yarns was smaller in the perforated samples.Moreover,the flexible matrix composites always had higher perforation resistance but larger deformation than the rigid matrix counterparts in the tested thickness and velocity range.A novel numerical modelling approach with enhanced computational efficiency was proposed to simulate textile composites in mesoscale resolution.The simulation results revealed that stress and strain development in the more rigid matrix composite was localised in the vicinity of the impact location,leading to larger local deformation and inferior perforation resistance.
基金Founded by the PhD Foundation of Anhui Jianzhu University (2018QD59)the Natural Science Foundation of Anhui Ed ucation Department (Nos.KJ2021A0624,KJ2019JD18,and KJ2019A0774)+1 种基金the National Natural Science Foundation of China (Nos.51903002,51703218,and 51633009)the Anhui Provincial Science and Technology Major Projects (Nos.17030901101 and 201903a05020027)。
文摘By adopting a homemade extension apparatus and wide-angle X-ray diffraction(WAXD)technique,the structural evolutions of the extracted ultra-high molecular weight polyethylene(UHMWPE)fibers with different spinning draw ratios were investigated during the poststretching process.Molecular chains oriented along the axis quickly at the early stage of drawing,which is quite different from the situation of drawing with solvents.The crystal regions,which have not melted at higher temperature,show stronger rigidity in the absence of solvents.Rigid characteristics show faster response to the external field.Also,the surface morphologies of fibers after poststretching are characterized by scanning electron microscopy(SEM).The lamellae stack disordered before stretching,but arranged in order along the draw direction when the draw ratios were larger than 1.