Reradiation interference(RRI) from ultra high voltage(UHV) power lines has become a hotspot for researches in electromagnetic(EM) interference between UHV power grids and adjacent radio stations.The mechanism of RRI,n...Reradiation interference(RRI) from ultra high voltage(UHV) power lines has become a hotspot for researches in electromagnetic(EM) interference between UHV power grids and adjacent radio stations.The mechanism of RRI,numerical simulations,methods of protecting distance calculation,and resonance characteristics of RRI are reviewed in this paper using results of works reported by IEEE and Chinese publications.We conclude in this review that RRI at short and medium wavelengths can be simulated using method of moment(MoM) and two commonly used models,the wire model and the surface model,which have different applicable conditions.We indicate that the accurate simulation of RRI at higher frequencies using uniform geometrical theory of diffraction is still beyond our capability because it requires studies of the relative simulation methods.We also suggest that further researches of the mechanism of RRI and the prediction of resonance frequencies above 1.7 MHz are necessary for dealing with the interference between the existing power lines and radio stations because resonance frequencies proposed by IEEE are less than 1.7 MHz.展开更多
The overvoltage phenomena of ultra high voltage (UHV) transmission lines are analyzed and verified by EMTDC/PSCAD simulation. Referring to the theoretical analyses and operating experiences of extra high voltage (EHV)...The overvoltage phenomena of ultra high voltage (UHV) transmission lines are analyzed and verified by EMTDC/PSCAD simulation. Referring to the theoretical analyses and operating experiences of extra high voltage (EHV) transmission lines in China and UHV transmission lines in Russia and Japan, the methods to suppress the internal overvoltage in UHV transmission lines by protection and control strategies are discussed. Through the cooperation among the recloser, shunt reactor, tripping and closing resistance, and metal oxide varistor(MOV), the overvoltage can be restrained within an acceptable level.展开更多
The conventional fault analysis method based on symmetrical components supposes that the three-phase parameters of un-transposed transmission line are symmetrical in case of fault. The errors caused by the method with...The conventional fault analysis method based on symmetrical components supposes that the three-phase parameters of un-transposed transmission line are symmetrical in case of fault. The errors caused by the method with the symmetrical distributed parameter circuit model as the equivalent circuit of the un-transposed ultra high voltage(UHV) transmission line were studied under both normal operation and fault,and the corresponding problems arising were pointed out. By contrast with electromagnetic transient and power electronics(EMTPE) simulation results with the asymmetrical distributed parameter circuit model of un-transposed line, it is shown that the conventional method cannot show the existence of negative and zero sequences before fault happening and there are many errors on voltage and current after fault happening which are different with fault types. The error ranges of voltage and current are 2.13%-81.13% and -7.82%- -86.15%, respectively.展开更多
The first UHV experimental line section of 1000 kV class in China, situated at the outdoor test yard of Wuhan High Voltage Research Institute under the Ministry of Electric Power has been built just before July 1st, 1...The first UHV experimental line section of 1000 kV class in China, situated at the outdoor test yard of Wuhan High Voltage Research Institute under the Ministry of Electric Power has been built just before July 1st, 1996. This experimental line section is 200 m long with 3 phase, 8展开更多
The induced electricity of 110 kV transmission lines which cross the UHV AC transmission lines may threaten personal safety of the maintenance staff. In this paper, field measurement of the induced voltage and induced...The induced electricity of 110 kV transmission lines which cross the UHV AC transmission lines may threaten personal safety of the maintenance staff. In this paper, field measurement of the induced voltage and induced current on a 110 kV crossing line inside Jinhua in Zhejiang province is performed. The electrostatic induced voltage on the measured line is 12.24 kV. The power frequency electromagnetic field simulation model is established, and the calculation results are consistent with the measured. Influence factors analysis shows that the electrostatic induced voltage on the 110 kV line is 12.78 kV, the electromagnetic induced voltage is 12.3 V, the induced current through ground wire is less than 1A when the UHV lines operate at full load. The induced voltage and current decrease while the crossing distance increases. Parallel lines induction is much higher than crossing lines. The electromagnetic induced voltage after ground knife-switch shut down would exceed the human safety voltage 36 V while the crossing angle is less than 30?, so the temporary ground wire must be hanged to ensure safety of the maintenance staff.展开更多
An accurate fault location algorithm for double-circuit series compensated lines is presented.Use of two-end unsynchronized measurements of current and voltage signals is considered.The algorithm applies two subroutin...An accurate fault location algorithm for double-circuit series compensated lines is presented.Use of two-end unsynchronized measurements of current and voltage signals is considered.The algorithm applies two subroutines,designated for locating faults on particular line sections,and additionally the procedure for selecting the valid subroutine.The subroutines are formulated with use of the generalized fault loop model and the distributed parameter line model is applied.Performed ATP-EMTP based evaluation has shown the validity of the derived fault location algorithm and its high accuracy.展开更多
The operation data obtained abroad indicates that shielding failure in UHV transmission lines mostly accounts for the tripping-out accidents introduced by lightning striking the transmission line.Based on the discharg...The operation data obtained abroad indicates that shielding failure in UHV transmission lines mostly accounts for the tripping-out accidents introduced by lightning striking the transmission line.Based on the discharge theories of long air gap and randomness theory,a leader progression model of lightning shielding failure is presented in this paper.The random characteristics of the downward and upward leader are simulated in this model.The ground slope angel is also considered in this model by using coordinate transformation.Moreover,the system voltage is also taken into consideration in this model.The simulation results show that the good agreement between this model and the field data.And the results suggest that return striking exist obviously in UHV transmission line.展开更多
The protection based balance of energy is a new technique specially proposed for long transmission lines. This technique depends upon the calculation of net energy into the transmission line by two independent methods...The protection based balance of energy is a new technique specially proposed for long transmission lines. This technique depends upon the calculation of net energy into the transmission line by two independent methods and comparing them to indicate healthy and faulty conditions. In order to study the performance and feasibility of the protection based on balance of energy, the new protection has been extensively tested by using EMTP on a long transmission line with various configurations and operating conditions (including single pole line, double circuit lines and two phase operation). The results calculated by EMTP show that under any condition of a power system, the proposed technique has excellent performance,the viability even for high resistance ground faults and a short operation time.展开更多
基金Project supported by National Natural Science Foundation of China (51307098), Hubei Provincial Natural Science Foundation of China (2012FFB03701).
文摘Reradiation interference(RRI) from ultra high voltage(UHV) power lines has become a hotspot for researches in electromagnetic(EM) interference between UHV power grids and adjacent radio stations.The mechanism of RRI,numerical simulations,methods of protecting distance calculation,and resonance characteristics of RRI are reviewed in this paper using results of works reported by IEEE and Chinese publications.We conclude in this review that RRI at short and medium wavelengths can be simulated using method of moment(MoM) and two commonly used models,the wire model and the surface model,which have different applicable conditions.We indicate that the accurate simulation of RRI at higher frequencies using uniform geometrical theory of diffraction is still beyond our capability because it requires studies of the relative simulation methods.We also suggest that further researches of the mechanism of RRI and the prediction of resonance frequencies above 1.7 MHz are necessary for dealing with the interference between the existing power lines and radio stations because resonance frequencies proposed by IEEE are less than 1.7 MHz.
基金ABB (China) Research Ltd. and National Natural Science Foundation of China(No.50477037)
文摘The overvoltage phenomena of ultra high voltage (UHV) transmission lines are analyzed and verified by EMTDC/PSCAD simulation. Referring to the theoretical analyses and operating experiences of extra high voltage (EHV) transmission lines in China and UHV transmission lines in Russia and Japan, the methods to suppress the internal overvoltage in UHV transmission lines by protection and control strategies are discussed. Through the cooperation among the recloser, shunt reactor, tripping and closing resistance, and metal oxide varistor(MOV), the overvoltage can be restrained within an acceptable level.
文摘The conventional fault analysis method based on symmetrical components supposes that the three-phase parameters of un-transposed transmission line are symmetrical in case of fault. The errors caused by the method with the symmetrical distributed parameter circuit model as the equivalent circuit of the un-transposed ultra high voltage(UHV) transmission line were studied under both normal operation and fault,and the corresponding problems arising were pointed out. By contrast with electromagnetic transient and power electronics(EMTPE) simulation results with the asymmetrical distributed parameter circuit model of un-transposed line, it is shown that the conventional method cannot show the existence of negative and zero sequences before fault happening and there are many errors on voltage and current after fault happening which are different with fault types. The error ranges of voltage and current are 2.13%-81.13% and -7.82%- -86.15%, respectively.
文摘The first UHV experimental line section of 1000 kV class in China, situated at the outdoor test yard of Wuhan High Voltage Research Institute under the Ministry of Electric Power has been built just before July 1st, 1996. This experimental line section is 200 m long with 3 phase, 8
文摘The induced electricity of 110 kV transmission lines which cross the UHV AC transmission lines may threaten personal safety of the maintenance staff. In this paper, field measurement of the induced voltage and induced current on a 110 kV crossing line inside Jinhua in Zhejiang province is performed. The electrostatic induced voltage on the measured line is 12.24 kV. The power frequency electromagnetic field simulation model is established, and the calculation results are consistent with the measured. Influence factors analysis shows that the electrostatic induced voltage on the 110 kV line is 12.78 kV, the electromagnetic induced voltage is 12.3 V, the induced current through ground wire is less than 1A when the UHV lines operate at full load. The induced voltage and current decrease while the crossing distance increases. Parallel lines induction is much higher than crossing lines. The electromagnetic induced voltage after ground knife-switch shut down would exceed the human safety voltage 36 V while the crossing angle is less than 30?, so the temporary ground wire must be hanged to ensure safety of the maintenance staff.
文摘An accurate fault location algorithm for double-circuit series compensated lines is presented.Use of two-end unsynchronized measurements of current and voltage signals is considered.The algorithm applies two subroutines,designated for locating faults on particular line sections,and additionally the procedure for selecting the valid subroutine.The subroutines are formulated with use of the generalized fault loop model and the distributed parameter line model is applied.Performed ATP-EMTP based evaluation has shown the validity of the derived fault location algorithm and its high accuracy.
基金Project Supported by National Natural Science Foundation of China (50707036), Key Project of the National Eleventh-five Year Research Program of China (2006BAA02A18).
文摘The operation data obtained abroad indicates that shielding failure in UHV transmission lines mostly accounts for the tripping-out accidents introduced by lightning striking the transmission line.Based on the discharge theories of long air gap and randomness theory,a leader progression model of lightning shielding failure is presented in this paper.The random characteristics of the downward and upward leader are simulated in this model.The ground slope angel is also considered in this model by using coordinate transformation.Moreover,the system voltage is also taken into consideration in this model.The simulation results show that the good agreement between this model and the field data.And the results suggest that return striking exist obviously in UHV transmission line.
文摘The protection based balance of energy is a new technique specially proposed for long transmission lines. This technique depends upon the calculation of net energy into the transmission line by two independent methods and comparing them to indicate healthy and faulty conditions. In order to study the performance and feasibility of the protection based on balance of energy, the new protection has been extensively tested by using EMTP on a long transmission line with various configurations and operating conditions (including single pole line, double circuit lines and two phase operation). The results calculated by EMTP show that under any condition of a power system, the proposed technique has excellent performance,the viability even for high resistance ground faults and a short operation time.