A joint Doppler shift and channel estimation method for the millimeter-wave communication system of an unmanned aerial vehicle(UAV) equipped with a large-scale uniform linear antenna(ULA) array has been proposed. Sinc...A joint Doppler shift and channel estimation method for the millimeter-wave communication system of an unmanned aerial vehicle(UAV) equipped with a large-scale uniform linear antenna(ULA) array has been proposed. Since Doppler shift induces intercarrier interference, the parameters of the channel paths have been decomposed into the Doppler shift and the channel information. In order to obtain the Doppler shift, a new estimation algorithm based on a combination of discrete Fourier transform and phase rotation has been proposed, which can determine the appropriate number of antennas. In addition to estimating the channel information, a low-complexity joint Doppler shift and channel estimation method has been designed that can quickly obtain accurate estimates. Furthermore, the achievable sum rate, the theoretical bounds of the mean squared errors, and the Cram?er-Rao lower bounds of the estimation method have been derived. The analysis and simulation results prove that the performance of the proposed approach is close to the theoretical inference.展开更多
Array calibration is important in engineering practice. In this paper, fast calibration methods for a ULA's gain and phase errors both in far and near fields are proposed. In the far field, using a single sound so...Array calibration is important in engineering practice. In this paper, fast calibration methods for a ULA's gain and phase errors both in far and near fields are proposed. In the far field, using a single sound source without exact orientation, this method horizontally rotates the array exactly once, performs eigen value decomposition for the covariance matrix of received data, then computes the gain and phase error according to the formulas. In the near field, using the same single sound source, it is necessary to rotate the array horizontally at most three times, build equations according to geometric relations, then solve them. Using the formula proposed in this paper, spherical waves are modified into plane waves. Then eigen values decomposition is performed. These two calibration methods were shown to be valid by simulation and are fast, accurate and easy to use. Finally, an analysis of factors influencing estimation precision is given.展开更多
This paper reports on investigations into the performance of a Multiple Input Multiple Output (MIMO) wireless communication system employing a uniform linear array (ULA) at the transmitter and either a uni-form linear...This paper reports on investigations into the performance of a Multiple Input Multiple Output (MIMO) wireless communication system employing a uniform linear array (ULA) at the transmitter and either a uni-form linear array (ULA) or a uniform circular array (UCA) antenna at the receiver. The transmitter is as-sumed to be surrounded by scattering objects while the receiver is postulated to be free from scattering ob-jects. The Laplacian distribution of angle of arrival (AOA) of a signal reaching the receiver is postulated. The performance of bit error rate (BER), capacity and channel estimation for a MIMO system are evaluated for the two cases that the receiver is equipped with ULA or with UCA antennas.展开更多
Uniform linear array(ULA)radars are widely used in the collision-avoidance radar systems of small unmanned aerial vehicles(UAVs).In practice,a ULA's multi-target direction of arrival(DOA)estimation performance suf...Uniform linear array(ULA)radars are widely used in the collision-avoidance radar systems of small unmanned aerial vehicles(UAVs).In practice,a ULA's multi-target direction of arrival(DOA)estimation performance suffers from significant performance degradation owing to the limited number of physical elements.To improve the underdetermined DOA estimation performance of a ULA radar mounted on a small UAV platform,we propose a nonuniform linear motion sampling underdetermined DOA estimation method.Using the motion of the UAV platform,the echo signal is sampled at different positions.Then,according to the concept of difference co-array,a virtual ULA with multiple array elements and a large aperture is synthesized to increase the degrees of freedom(DOFs).Through position analysis of the original and motion arrays,we propose a nonuniform linear motion sampling method based on ULA for determining the optimal DOFs.Under the condition of no increase in the aperture of the physical array,the proposed method obtains a high DOF with fewer sampling runs and greatly improves the underdetermined DOA estimation performance of ULA.The results of numerical simulations conducted herein verify the superior performance of the proposed method.展开更多
基金supported by National Natural Science Foundation of China (No. 62101601, No.61971445)。
文摘A joint Doppler shift and channel estimation method for the millimeter-wave communication system of an unmanned aerial vehicle(UAV) equipped with a large-scale uniform linear antenna(ULA) array has been proposed. Since Doppler shift induces intercarrier interference, the parameters of the channel paths have been decomposed into the Doppler shift and the channel information. In order to obtain the Doppler shift, a new estimation algorithm based on a combination of discrete Fourier transform and phase rotation has been proposed, which can determine the appropriate number of antennas. In addition to estimating the channel information, a low-complexity joint Doppler shift and channel estimation method has been designed that can quickly obtain accurate estimates. Furthermore, the achievable sum rate, the theoretical bounds of the mean squared errors, and the Cram?er-Rao lower bounds of the estimation method have been derived. The analysis and simulation results prove that the performance of the proposed approach is close to the theoretical inference.
文摘Array calibration is important in engineering practice. In this paper, fast calibration methods for a ULA's gain and phase errors both in far and near fields are proposed. In the far field, using a single sound source without exact orientation, this method horizontally rotates the array exactly once, performs eigen value decomposition for the covariance matrix of received data, then computes the gain and phase error according to the formulas. In the near field, using the same single sound source, it is necessary to rotate the array horizontally at most three times, build equations according to geometric relations, then solve them. Using the formula proposed in this paper, spherical waves are modified into plane waves. Then eigen values decomposition is performed. These two calibration methods were shown to be valid by simulation and are fast, accurate and easy to use. Finally, an analysis of factors influencing estimation precision is given.
文摘This paper reports on investigations into the performance of a Multiple Input Multiple Output (MIMO) wireless communication system employing a uniform linear array (ULA) at the transmitter and either a uni-form linear array (ULA) or a uniform circular array (UCA) antenna at the receiver. The transmitter is as-sumed to be surrounded by scattering objects while the receiver is postulated to be free from scattering ob-jects. The Laplacian distribution of angle of arrival (AOA) of a signal reaching the receiver is postulated. The performance of bit error rate (BER), capacity and channel estimation for a MIMO system are evaluated for the two cases that the receiver is equipped with ULA or with UCA antennas.
基金National Natural Science Foundation of China(61973037)National 173 Program Project(2019-JCJQ-ZD-324)。
文摘Uniform linear array(ULA)radars are widely used in the collision-avoidance radar systems of small unmanned aerial vehicles(UAVs).In practice,a ULA's multi-target direction of arrival(DOA)estimation performance suffers from significant performance degradation owing to the limited number of physical elements.To improve the underdetermined DOA estimation performance of a ULA radar mounted on a small UAV platform,we propose a nonuniform linear motion sampling underdetermined DOA estimation method.Using the motion of the UAV platform,the echo signal is sampled at different positions.Then,according to the concept of difference co-array,a virtual ULA with multiple array elements and a large aperture is synthesized to increase the degrees of freedom(DOFs).Through position analysis of the original and motion arrays,we propose a nonuniform linear motion sampling method based on ULA for determining the optimal DOFs.Under the condition of no increase in the aperture of the physical array,the proposed method obtains a high DOF with fewer sampling runs and greatly improves the underdetermined DOA estimation performance of ULA.The results of numerical simulations conducted herein verify the superior performance of the proposed method.