OBJECTIVE To discover a small-molecule activator of ULK1 for Parkinson disease treatment and exploreits potential mechanisms.METHODS Candidate ULK1 activator was found by using structure-based design and high-through ...OBJECTIVE To discover a small-molecule activator of ULK1 for Parkinson disease treatment and exploreits potential mechanisms.METHODS Candidate ULK1 activator was found by using structure-based design and high-through put screening,then modified by chemical synthesis and screened by kinase and autophgic activities.The amino acid residues that key to the activation site of the best candidate ULK1 activator(BL-918) were determined by site-directed mutagenesis,as well as in vitro kinase assay,ADP-Glo kinase assay and surface plasmon resonance(SPR) analysis.The mechanisms of BL-918 induced cytoprotective autophagy were investigated by electron microscopy,fluorescence microscopy,Western blotting,co-immunoprecipitation assay,si RNA and GFP-LC3 plasmid transfections.The therapeutic effect of BL-918 was determined by MPTP-mouse model,including behavioral tests,the levels of dopamine and its derivatives,as well as immunofluorescence and Western blotting.The toxicity of BL-918 was assessed by blood sample analysis and hematoxylin-eosin staining.RESULTS We discovered a small molecule(BL-918) as a potent activator of ULK1 by structure-based drug design.Subsequently,some key amino acid residues(Arg18,Lys50,Asn86 and Tyr89) were found to be crucial to the binding pocket between ULK1 and BL-918,by site-directed mutagenesis.Moreover,we found that BL-918 could induce autophagy via the ULK complex in neuroblastoma SH-SY5Y cells.Intriguingly,this activator displayed a cytoprotective effect on MPP+-treated SH-SY5Y cells,as well as protected against MPTP-induced motor dysfunction and loss of dopaminergic neurons by targeting ULK1-modulated autophagy in mouse models of PD.CONCLUSION We discovered a novel ULK1 activator(BL-918) that potently activated ULK1.This activator could induce cytoprotective autophagy via the ULK1 complex in SH-SY5Y cells,and also exerted its neuroprotective effects by targeting ULK1-modulated autophagy in a MPTP-induced PD mouse model,which may serve as a candidate drug for future PD therapy.展开更多
During their growth and development, animals adapt to tremendous changes in order to survive. These include responses to both environmental and physiological changes and autophagy is one of most important adaptive and...During their growth and development, animals adapt to tremendous changes in order to survive. These include responses to both environmental and physiological changes and autophagy is one of most important adaptive and regulatory mechanisms. Autophagy is defined as an autolytic process to clear damaged cellular organelles and recycle the nutrients via lysosomic degradation. The process of autophagy responds to special conditions such as nutrient withdrawal. Once autophagy is induced,phagophores form and then elongate and curve to form autophagosomes. Autophagosomes then engulf cargo,fuse with endosomes, and finally fuse with lysosomes for maturation. During the initiation process, the ATG1/ULK1(unc-51-like kinase 1) and VPS34(which encodes a class III phosphatidylinositol(Ptd Ins) 3-kinase) complexes are critical in recruitment and assembly of other complexes required for autophagy. The process of autophagy is regulated by autophagy related genes(ATGs). Amino acid and energy starvation mediate autophagy by activating m TORC1(mammalian target of rapamycin) and AMPactivated protein kinase(AMPK). AMPK is the energy status sensor, the core nutrient signaling component and the metabolic kinase of cells. This review mainly focuses on the mechanism of autophagy regulated by nutrient signaling especially for the two important complexes,ULK1 and VPS34.展开更多
基金supported by National Natural Science Foundation of China(81602953)China Postdoctoral Special Science Foundation(2017T100706)China Postdoctoral Science Foundation(2016M590893)
文摘OBJECTIVE To discover a small-molecule activator of ULK1 for Parkinson disease treatment and exploreits potential mechanisms.METHODS Candidate ULK1 activator was found by using structure-based design and high-through put screening,then modified by chemical synthesis and screened by kinase and autophgic activities.The amino acid residues that key to the activation site of the best candidate ULK1 activator(BL-918) were determined by site-directed mutagenesis,as well as in vitro kinase assay,ADP-Glo kinase assay and surface plasmon resonance(SPR) analysis.The mechanisms of BL-918 induced cytoprotective autophagy were investigated by electron microscopy,fluorescence microscopy,Western blotting,co-immunoprecipitation assay,si RNA and GFP-LC3 plasmid transfections.The therapeutic effect of BL-918 was determined by MPTP-mouse model,including behavioral tests,the levels of dopamine and its derivatives,as well as immunofluorescence and Western blotting.The toxicity of BL-918 was assessed by blood sample analysis and hematoxylin-eosin staining.RESULTS We discovered a small molecule(BL-918) as a potent activator of ULK1 by structure-based drug design.Subsequently,some key amino acid residues(Arg18,Lys50,Asn86 and Tyr89) were found to be crucial to the binding pocket between ULK1 and BL-918,by site-directed mutagenesis.Moreover,we found that BL-918 could induce autophagy via the ULK complex in neuroblastoma SH-SY5Y cells.Intriguingly,this activator displayed a cytoprotective effect on MPP+-treated SH-SY5Y cells,as well as protected against MPTP-induced motor dysfunction and loss of dopaminergic neurons by targeting ULK1-modulated autophagy in mouse models of PD.CONCLUSION We discovered a novel ULK1 activator(BL-918) that potently activated ULK1.This activator could induce cytoprotective autophagy via the ULK1 complex in SH-SY5Y cells,and also exerted its neuroprotective effects by targeting ULK1-modulated autophagy in a MPTP-induced PD mouse model,which may serve as a candidate drug for future PD therapy.
基金financial support from the China Scholarship Council, the National Basic Research Program of China (2013CB117301)the National Natural Science Foundation of China (31272448, 31472101, 31420103908, and 31528018)+3 种基金the 111 Project (B16044)Beijing Nova Program (xx2013055)Education Foundation of China Agricultural University "Dabeinong Education Fund" (1041-2415001)National Department Public Benefit Research Foundation (201403047) are gratefully acknowledged
文摘During their growth and development, animals adapt to tremendous changes in order to survive. These include responses to both environmental and physiological changes and autophagy is one of most important adaptive and regulatory mechanisms. Autophagy is defined as an autolytic process to clear damaged cellular organelles and recycle the nutrients via lysosomic degradation. The process of autophagy responds to special conditions such as nutrient withdrawal. Once autophagy is induced,phagophores form and then elongate and curve to form autophagosomes. Autophagosomes then engulf cargo,fuse with endosomes, and finally fuse with lysosomes for maturation. During the initiation process, the ATG1/ULK1(unc-51-like kinase 1) and VPS34(which encodes a class III phosphatidylinositol(Ptd Ins) 3-kinase) complexes are critical in recruitment and assembly of other complexes required for autophagy. The process of autophagy is regulated by autophagy related genes(ATGs). Amino acid and energy starvation mediate autophagy by activating m TORC1(mammalian target of rapamycin) and AMPactivated protein kinase(AMPK). AMPK is the energy status sensor, the core nutrient signaling component and the metabolic kinase of cells. This review mainly focuses on the mechanism of autophagy regulated by nutrient signaling especially for the two important complexes,ULK1 and VPS34.