With the increasing demands of aircraft design,the traditional deterministic design can hardly meet the requirements of fine design optimization because uncertainties may exist throughout the whole lifecycle of the ai...With the increasing demands of aircraft design,the traditional deterministic design can hardly meet the requirements of fine design optimization because uncertainties may exist throughout the whole lifecycle of the aircraft. To enhance the robustness and reliability of the aircraft design, Uncertainty Multidisciplinary Design Optimization( UM DO) has been developing for a long time. This paper presents a comprehensive reviewof UM DO methods for aerospace vehicles,including basic UM DO theory and research progress of its application in aerospace vehicle design. Firstly,the UM DO theory is preliminarily introduced,with giving the definition and classification of uncertainty as well as its sources corresponding to the aircraft design. Then following the UM DO solving process, the application in different coupled disciplines is separately discussed during the aircraft design process,specifically clarifying the UM DO methods for aerostructural optimization. Finally,the main challenges of UM DO and the future research trends are given.展开更多
In this paper,an Uncertainty-based Multi-disciplinary Design Optimization (UMDO)method combining with fuzzy theory and Multi-Discipline Feasible (MDF) method is developed for the conceptual design of a Hybrid Rocket M...In this paper,an Uncertainty-based Multi-disciplinary Design Optimization (UMDO)method combining with fuzzy theory and Multi-Discipline Feasible (MDF) method is developed for the conceptual design of a Hybrid Rocket Motor (HRM) powered Launch Vehicle (LV).In the method proposed,membership functions are used to represent the uncertain factors,the fuzzy statistical experiment is introduced to analyze the propagation of uncertainties,and means,standard deviations and credibility measures are used to delineate uncertain responses.A geometric programming problem is solved to verify the feasibility of the Fuzzy-based Multi-Discipline Feasible(F-MDF) method.A multi-disciplinary analysis of a three-stage HRM powered LV involving the disciplines of propulsion,structure,aerodynamics and trajectory is implemented,and the mathematical models corresponding to the F-MDF method and the MDF method are established.A two-phase optimization method is proposed for multi-disciplinary design optimization of the LV,including the orbital capacity optimization phase based on the Ziolkowski formula,and the scheme trajectory verification phase based on the 3-degree-of-freedom point trajectory simulation.The correlation coefficients and the quadratic Response Surface Method (RSM) based on Latin Hypercube Sampling (LHS) are adopted for sensitive analysis of uncertain factors,and the Multi-Island Genetic Algorithm (MIGA) is adopted as the optimization algorithm.The results show that the F-MDF method is applicable in LV conceptual design,and the design with the F-MDF method is more reliable and robust than that with the MDF method.展开更多
基金Sponsored by the National Natural Science Foundation of China(Grant Nos.303QKJJ2016105002 and 30300002014105011)
文摘With the increasing demands of aircraft design,the traditional deterministic design can hardly meet the requirements of fine design optimization because uncertainties may exist throughout the whole lifecycle of the aircraft. To enhance the robustness and reliability of the aircraft design, Uncertainty Multidisciplinary Design Optimization( UM DO) has been developing for a long time. This paper presents a comprehensive reviewof UM DO methods for aerospace vehicles,including basic UM DO theory and research progress of its application in aerospace vehicle design. Firstly,the UM DO theory is preliminarily introduced,with giving the definition and classification of uncertainty as well as its sources corresponding to the aircraft design. Then following the UM DO solving process, the application in different coupled disciplines is separately discussed during the aircraft design process,specifically clarifying the UM DO methods for aerostructural optimization. Finally,the main challenges of UM DO and the future research trends are given.
基金supported by National Natural Science Foundation of China (No. 51305014)
文摘In this paper,an Uncertainty-based Multi-disciplinary Design Optimization (UMDO)method combining with fuzzy theory and Multi-Discipline Feasible (MDF) method is developed for the conceptual design of a Hybrid Rocket Motor (HRM) powered Launch Vehicle (LV).In the method proposed,membership functions are used to represent the uncertain factors,the fuzzy statistical experiment is introduced to analyze the propagation of uncertainties,and means,standard deviations and credibility measures are used to delineate uncertain responses.A geometric programming problem is solved to verify the feasibility of the Fuzzy-based Multi-Discipline Feasible(F-MDF) method.A multi-disciplinary analysis of a three-stage HRM powered LV involving the disciplines of propulsion,structure,aerodynamics and trajectory is implemented,and the mathematical models corresponding to the F-MDF method and the MDF method are established.A two-phase optimization method is proposed for multi-disciplinary design optimization of the LV,including the orbital capacity optimization phase based on the Ziolkowski formula,and the scheme trajectory verification phase based on the 3-degree-of-freedom point trajectory simulation.The correlation coefficients and the quadratic Response Surface Method (RSM) based on Latin Hypercube Sampling (LHS) are adopted for sensitive analysis of uncertain factors,and the Multi-Island Genetic Algorithm (MIGA) is adopted as the optimization algorithm.The results show that the F-MDF method is applicable in LV conceptual design,and the design with the F-MDF method is more reliable and robust than that with the MDF method.