Let D be an integral domain, ψ(D) (resp., t-ψ(D)) be the set of all valuation (resp., t-valuation) ideals of D, and w-P(D) be the set of primary w-ideals of D. Let D[X] be the polynomial ring over 19, c(f...Let D be an integral domain, ψ(D) (resp., t-ψ(D)) be the set of all valuation (resp., t-valuation) ideals of D, and w-P(D) be the set of primary w-ideals of D. Let D[X] be the polynomial ring over 19, c(f) be the ideal of D generated by the coefficients of f ∈ D[X], and Nv = {f∈ D[X] | c(f)v = D}. In this paper, we study integral domains D in which w-P(D) t-ψ(D), t-ψ(D) w-P(D), or t-ψ(D) = w-P(D). We also study the relationship between t-ψ(D) and ψ(D[X]Nv), and characterize when t-ψ(A + XB[X]) w-P(A + XB[X]) holds for a proper extension A c B of integral domains.展开更多
文摘Let D be an integral domain, ψ(D) (resp., t-ψ(D)) be the set of all valuation (resp., t-valuation) ideals of D, and w-P(D) be the set of primary w-ideals of D. Let D[X] be the polynomial ring over 19, c(f) be the ideal of D generated by the coefficients of f ∈ D[X], and Nv = {f∈ D[X] | c(f)v = D}. In this paper, we study integral domains D in which w-P(D) t-ψ(D), t-ψ(D) w-P(D), or t-ψ(D) = w-P(D). We also study the relationship between t-ψ(D) and ψ(D[X]Nv), and characterize when t-ψ(A + XB[X]) w-P(A + XB[X]) holds for a proper extension A c B of integral domains.