The atmospheric corrosion of UNS G10190 steel under a thin electrolyte film in the atmosphere polluted by CO_2, has been studied in the lab using an atmospheric corrosion monitor (ACM) in combination with XRD and SEM...The atmospheric corrosion of UNS G10190 steel under a thin electrolyte film in the atmosphere polluted by CO_2, has been studied in the lab using an atmospheric corrosion monitor (ACM) in combination with XRD and SEM observations of the surface of steel. The ACM study indicated that the corrosion rate of the steel increased with increasing carbon dioxide concentration. The XRD and SEM observations showed that no carbonate was found in the corrosion product on the steel surface. The corrosion product consisted of two layers, i. e., inner and outer layer. From the experimental results, it was concluded that CO_2 played an enhancing role in the atmospheric corrosion of UNS G10190 steel. The film of the corrosion product showed slight protection.展开更多
基金the National Natural Science Foundation of China!(No. 59871051)
文摘The atmospheric corrosion of UNS G10190 steel under a thin electrolyte film in the atmosphere polluted by CO_2, has been studied in the lab using an atmospheric corrosion monitor (ACM) in combination with XRD and SEM observations of the surface of steel. The ACM study indicated that the corrosion rate of the steel increased with increasing carbon dioxide concentration. The XRD and SEM observations showed that no carbonate was found in the corrosion product on the steel surface. The corrosion product consisted of two layers, i. e., inner and outer layer. From the experimental results, it was concluded that CO_2 played an enhancing role in the atmospheric corrosion of UNS G10190 steel. The film of the corrosion product showed slight protection.