AIM:To investigate the expression and effect of histone deacetylase 7(HDAC7)in human retinal microvascular endothelial cells(HRMECs)under high glucose condition and related mechanism,and the expression of HDAC7 in the...AIM:To investigate the expression and effect of histone deacetylase 7(HDAC7)in human retinal microvascular endothelial cells(HRMECs)under high glucose condition and related mechanism,and the expression of HDAC7 in the retinal tissue in diabetic rats.METHODS:The expression of HDAC7 in HRMECs under high glucose and the retinal tissue from normal or diabetic rats were detected with immunohistochemistry and Western blot.LV-shHDAC7 HRMECs were used to study the effect of HDAC7 on cell activities.Cell count kit-8(CCK-8),5-ethynyl2’-deoxyuridine(EdU),flow cytometry,scratch test,Transwell test and tube formation assay were used to examine the ability of cell proliferation,migration,and angiogenesis.Finally,a preliminary exploration of its mechanism was performed by Western blot.RESULTS:The expression of HDAC7 was both upregulated in retinal tissues of diabetic rats and high glucosetreated HRMECs.Down-regulation of HDAC7 expression significantly reduced the ability of proliferation,migration,and tube formation,and reversed the high glucose-induced high expression of CDK1/Cyclin B1 and vascular endothelial growth factor in high glucose-treated HRMECs.CONCLUSION:High glucose can up-regulate the expression of HDAC7 in HRMECs.Down-regulation of HDAC7 can inhibit HRMECs activities.HDAC7 is proposed to be involved in pathogenesis of diabetic retinopathy and a therapeutic target.展开更多
Objective:To determine the destructive ability of oxocrebanine,an anti-breast cancer active compound obtained from Stephania hainanensis H.S.Lo et Y.Tsoong,on microtubule network,and investigate the effect of oxocreba...Objective:To determine the destructive ability of oxocrebanine,an anti-breast cancer active compound obtained from Stephania hainanensis H.S.Lo et Y.Tsoong,on microtubule network,and investigate the effect of oxocrebanine on microtubule network homeostasis at both molecular and cellular levels.Methods:the EBI site competition method and molecular docking method were used to determine the occupation of the microtubule site of oxocrebanine.Western Blot was used to detect the effect of oxocrebanine on microtubule-associated proteins including STAT3,PAK1,CAMK4,and PKA.Results:The results of EBI site competition assay showed that the binding of EBI toβ-Tubulin covalent fusions produced adducts that appeared in regions of lower molecular weight thanβ-tubulin(ctrl 2).Molecular docking results showed that oxocrebanine could occupy the colchicine site of microtubule proteins.As revealed by Western Blot,the expression of STAT3 protein was decreased after MCF-7 cells have been treated with low,medium,and high concentration of oxocrebanine or the positive drug taxol for 48 h(P<0.01).The expression levels of PAK1 and Camk4 proteins aslo showed significant reductions(P<0.05,or P<0.01).Oxocrebanine also decreased the PKA protein in MCF-7 cells compared to the control group(P<0.01).Conclusions:Oxocrebanine,a ligand that binds at the colchicine site of tubulin,perturbs tubulin polymerization and causes mitosis in MCF-7 cells,thus leading to MCF-7 cell death.Oxocrebanine may promote microtubule dynamics through stathmin by inhibiting the expression levels of STAT3,PAK1,Camk4,and PKA proteins in MCF-7 cells.Oxocrebanine interfers with spindle formation,and ultimately causes mitotic catastrophe in MCF-7 cells.展开更多
Studies on ischemia/reperfusion(I/R)injury suggest that exogenous neural stem cells(NSCs)are ideal candidates for stem cell therapy reperfusion injury.However,NSCs are difficult to obtain owing to ethical limitations....Studies on ischemia/reperfusion(I/R)injury suggest that exogenous neural stem cells(NSCs)are ideal candidates for stem cell therapy reperfusion injury.However,NSCs are difficult to obtain owing to ethical limitations.In addition,the survival,differentiation,and proliferation rates of transplanted exogenous NSCs are low,which limit their clinical application.Our previous study showed that neuregulin1β(NRG1β)alleviated cerebral I/R injury in rats.In this study,we aimed to induce human umbilical cord mesenchymal stem cells into NSCs and investigate the improvement effect and mechanism of NSCs pretreated with 10 nM NRG1βon PC12 cells injured by oxygen-glucose deprivation/reoxygenation(OGD/R).Our results found that 5 and 10 nM NRG1βpromoted the generation and proliferation of NSCs.Co-culture of NSCs and PC12 cells under condition of OGD/R showed that pretreatment of NSCs with NRG1βimproved the level of reactive oxygen species,malondialdehyde,glutathione,superoxide dismutase,nicotinamide adenine dinucleotide phosphate,and nuclear factor erythroid 2-related factor 2(Nrf2)and mitochondrial damage in injured PC12 cells;these indexes are related to ferroptosis.Research has reported that p53 and solute carrier family 7 member 11(SLC7A11)play vital roles in ferroptosis caused by cerebral I/R injury.Our data show that the expression of p53 was increased and the level of glutathione peroxidase 4(GPX4)was decreased after RNA interference-mediated knockdown of SLC7A11 in PC12 cells,but this change was alleviated after co-culturing NSCs with damaged PC12 cells.These findings suggest that NSCs pretreated with NRG1βexhibited neuroprotective effects on PC12 cells subjected to OGD/R through influencing the level of ferroptosis regulated by p53/SLC7A11/GPX4 pathway.展开更多
Objective:To evaluate of hesperidin to overcome resistance of doxorubicin in MCF-7 resistant doxorubicin cells(MCF-7/Dox)in cytotoxicity apoptosis and P-glycoprotein(Pgp)expression in combination with doxorubicin.Meth...Objective:To evaluate of hesperidin to overcome resistance of doxorubicin in MCF-7 resistant doxorubicin cells(MCF-7/Dox)in cytotoxicity apoptosis and P-glycoprotein(Pgp)expression in combination with doxorubicin.Methods:The cytotoxic properties.50%inhibition concentration(IC_(50))and its combination with doxorubicin in MCF-7 cell lines resistant to doxorubicin(MCF-7/Dox)cells were determined using MTT assay.Apoptosis induction was examined by double staining assay using ethidium bromide-acridine orange.Immunocytochemistry assay was performed to determine the level and localization of Pgp.Results:Single treatment of hesperidin showed cytotoxic activity on MCF-7/Dox cells with IC_(50)value of 11μmol/L.Thus,combination treatment from hesperidin and doxorubicin showed addictive and antagonist effect(CI>1.0).Hesperidin did not increase the apoptotic induction,but decreased the Pgp expressions level when combined with doxorubicin in low concentration.Conclusions:Hesperidin has cytotoxic effect on MCF-7/Dox cells with IC_(50)of 11μmol/L.Hesperidin did not increased the apoptotic induction combined with doxorubicin.Cochemotherapy application of doxorubicin and hesperidin on MCF-7/Dox cells showed synergism effect through inhibition of Pgp expression.展开更多
Objective:To determine the structure of triterpenoid isolated from avocado seeds and the cytotoxic effect on MCF-7 and Hep G2 cells.Methods:The powder sample was macerated with ethanol,followed with separation of the ...Objective:To determine the structure of triterpenoid isolated from avocado seeds and the cytotoxic effect on MCF-7 and Hep G2 cells.Methods:The powder sample was macerated with ethanol,followed with separation of the extract by column chromatography.The target compound was monitored on thin layer chromatography plate and reagent Lieberman–Buchard.The isolated compound was characterized by spectral analysis,mainly ultraviolet,infrared,and liquid chromatographymass spectroscopy and their spectroscopic data with those reported in literature were compared.In vitro cytotoxic activity was investigated against Vero,MCF-7,and Hep G2 cell lines using MTT assay.Results:A triterpenoid compound was isolated from ethanol extract.The extracts,fraction(F3),and the isolated compound showed a significant cytotoxic activity against all investigated cell lines.MTT assay showed that the triterpenoid isolate inhibited cell proliferation of MCF-7 and Hep G2 cell line with the IC50 values of 62 mg/m L and 12 mg/m L,respectively,and was safe to normal cells.Conclusions:The results of the present study reveal that triterpenoid from avocado seeds have the potential for further development as anticancer agents.展开更多
Fucoidan is an active component of seaweed, which inhibits proliferation and induces apoptosis of several tumor cells while the detailed mechanisms underlying this process are still not clear. In this study, the effec...Fucoidan is an active component of seaweed, which inhibits proliferation and induces apoptosis of several tumor cells while the detailed mechanisms underlying this process are still not clear. In this study, the effect of Fucoidan on the proliferation and apoptosis of human breast cancer MCF-7 cells and the molecular mechanism of Fucoidan action were investigated. Viable cell number of MCF-7 cells was decreased by Fucoidan treatment in a dose-dependent manner as measured by MTT assay. Fucoidan treatment resulted in G1 phase arrest of MCF-7 cells as revealed by flow cytometry, which was associated with the decrease in the gene expression of cyclin D 1 and CDK-4. Annexin V/PI staining results showed that the number of apoptotic cells was associated with regulation of cytochrome C, cas- pase-8, Bax and Bcl-2 at transcriptional and translational levels. Both morphologic observation and Hoechst 33258 assay results confirmed the pro-apoptotic effect of Fucoidan. Meanwhile, the ROS pro- duction was also increased by Fucoidan treatment, which suggested that Fucoidan induced oxidative damage in MCF-7 cells. The results of present study demonstrated that Fucoidan could induce GI phase arrest and apoptosis in MCF-7 cells through regulating the cell cycle and apoptosis-related genes or proteins expression, and ROS generation is also involved in these processes.展开更多
AIM:To evaluate whether 8-bromo-7-methoxychrysin(BrMC),a synthetic analogue of chrysin,inhibits the properties of cancer stem cells derived from the human liver cancer MHCC97 cell line and to determine the potential m...AIM:To evaluate whether 8-bromo-7-methoxychrysin(BrMC),a synthetic analogue of chrysin,inhibits the properties of cancer stem cells derived from the human liver cancer MHCC97 cell line and to determine the potential mechanisms.METHODS:CD133+cells were sorted from the MHCC97 cell line by magnetic activated cell sorting,and amplified in stem cell-conditioned medium to obtain the enriched CD133+sphere forming cells(SFCs).The stem cell properties of CD133+SFCs were validated by the tumorsphere formation assay in vitro and the xenograft nude mouse model in vivo,and termed liver cancer stem cells(LCSCs).The effects of BrMC on LCSCs in vitro were evaluated by MTT assay,tumorsphere formation assay and transwell chamber assay.The effects of BrMC on LCSCs in vivo were determined using a primary and secondary xenograft model in Balb/c-nu mice.Expressions of the stem cell markers,epithelialmesenchymal transition(EMT)markers andβ-catenin protein were analyzed by western blotting or immunohistochemical analysis.RESULTS:CD133+SFCs exhibited stem-like cell properties of tumorsphere formation and tumorigenesis capacity in contrast to the parental MHCC97 cells.We found that BrMC preferentially inhibited proliferation and self-renewal of LCSCs(P<0.05).Furthermore,BrMC significantly suppressed EMT and invasion of LCSCs.Moreover,BrMC could efficaciously eliminate LCSCs in vivo.Interestingly,we showed that BrMC decreased the expression ofβ-catenin in LCSCs.Silencing ofβ-catenin by small interfering RNA could synergize the inhibition of self-renewal of LCSCs induced by BrMC,while Wnt3a treatment antagonized the inhibitory effects of BrMC.CONCLUSION:BrMC can inhibit the functions and characteristics of LCSCs derived from the liver cancer MHCC97 cell line through downregulation ofβ-catenin expression.展开更多
AIM: To investigate the expression of B7-H1 in human colorectal carcinoma (CRC) to define its regulating ef- fects on T cells in tumor microenvironment.
Objective: To investigate whether dietary daidzein interact with endogenous 17β-Estradiol (E2) to give rise to additive or inhibitory effects on proliferation and apoptosis in breast cancer cells. Methods: Cell ...Objective: To investigate whether dietary daidzein interact with endogenous 17β-Estradiol (E2) to give rise to additive or inhibitory effects on proliferation and apoptosis in breast cancer cells. Methods: Cell cycle distribution and apoptosis induction were analyzed by using flow cytometry when breast cancer cell lines MCF-7 were cotreated with daidzein (1, 5 μmol/L) and E2 (0.1-10 nmol/L) for 5 days. Whether daidzein could alter E2-modulated mRNA expression of estrogen receptor alpha (ERα), estrogen receptor beta (ERI3) and ERβ-estrogen response element (ERE) dependent transcription was investigated by RT-PCR and luciferase induction assays. The effects of daidzein on E2-modulated expression of proapoptotic p53, bax and antiapoptotic bcl-2 at both mRNA and protein levels were also investigated by RT-PCR and Western blot. Results: Daidzein enhanced the antiapoptotic effect in an Ea dose-dependent manner, but had no effect on E2-induced proliferation. Daidzein antagonized E2-induced ERβ mRNA expression and ERβ-ERE dependent transcription. In addition, daidzein only antagonized E2-upregulated expression of p53 and bax, but had no effect on E2-upregulated expression of bcl-2. Conclusion: Daidzein enhances the antiapoptotic effect of E2 on breast cancer cells by inhibiting E2-mediated p53-bax proapoptotic pathway. These results suggest that dietary daidzein may enhance deleterious effect of endogenous E2 in hormone-dependent breast cancer.展开更多
Aim: To investigate the regulatory function of Cox7a2 on steroidogenesis and the mechanism involved in TM3 mouse Leydig cells. Methods: The cDNA of Cox7a2 was cloned from TM3 mouse Leydig cells. It was subcloned to ...Aim: To investigate the regulatory function of Cox7a2 on steroidogenesis and the mechanism involved in TM3 mouse Leydig cells. Methods: The cDNA of Cox7a2 was cloned from TM3 mouse Leydig cells. It was subcloned to pDsRed- Express-N 1 and transfected back into TM3 mouse Leydig cells for Cox7a2 overexpression by transient gene transfection. Steroidogenesis affected by overexpressed Cox7a2 was studied by ELISA. To elicit the mechanism of this effect, expression of steroidogenic acute regulatory (STAR) protein and reactive oxygen species (ROS) were examined by Western blot and fluorometer, respectively. Results: The cDNA of Cox7a2 (249 bp) was cloned from Leydig cells and confirmed by DNA sequencing. After constructed pDsRed-Express-N1-Cox7a2 was transfected back into TM3 mouse Leydig cells, Cox7a2 inhibited not only luteinizing hormone (LH)-induced secretion of testosterone but also the expression of StAR protein. At the same time, Cox7a2 increased the activity of ROS in TM3 mouse Leydig cells. Conclusion: Cox7a2 inhibited LH-induced StAR protein expression, and consequent testosterone production, at least in part, by increasing ROS activity in TM3 mouse Leydig cells.展开更多
BACKGROUND: Pancreatic stellate cells (PSCs) play a major role in promoting pancreatic fibrosis. Transforming growth factor beta 1 (TGF-beta 1) is a critical mediator of this process. This study aimed to determine the...BACKGROUND: Pancreatic stellate cells (PSCs) play a major role in promoting pancreatic fibrosis. Transforming growth factor beta 1 (TGF-beta 1) is a critical mediator of this process. This study aimed to determine the expression of the Smad3 and Smad7 genes in the process of PSC activation, and explore the mechanisms of chronic pancreatitis. METHODS: The expressions of Smad3 and Smad7 in PSCs before and after TGF-beta 1 treatment were detected by reverse transcription-polymerase chain reaction and Western blotting analysis. Smad3 expression was detected in PSCs after treatment with 5 ng/ml of TGF-beta 1 for 24 hours. RESULTS: Smad7 expression was decreased in TGF-beta 1 -activated PSCs (P<0.05) in a dose-dependent manner. When TGF-beta 1 concentration reached 10 ng/ml, the expression of p-Smad3, Smad3, and Smad7 was inhibited (P<0.05). CONCLUSIONS: TGF-beta 1 promotes the expression of Smad3 and inhibits the expression of Smad7 during the activation of PSCs. In contrast, high-dose TGF-beta 1 downregulates the expression of Smad3 in completely activated PSCs.展开更多
AIM:To investigate the role of insulin-like growth factor binding protein-7 (IGFBP-7) in the activation and transdifferentiation of hepatic stellate cells (HSC) in vitro.METHODS:Rat HSC-T6 cells were cultured in separ...AIM:To investigate the role of insulin-like growth factor binding protein-7 (IGFBP-7) in the activation and transdifferentiation of hepatic stellate cells (HSC) in vitro.METHODS:Rat HSC-T6 cells were cultured in separate dishes and treated with various concentration of transforming growth factor (TGF)-β1,IGFBP-7 or antiIGFBP-7 antibody for 24 h.The supernatant or a cytoplasm suspension was obtained from cultured HSC,followed by transfer of cells to form cell-coated dishes.Immunocytochemistry and Western blotting were used to analyze the expression of IGFBP-7 induced by TGF-β1 and the level of fibronectin,collagen and α-smooth muscle actin (SMA).The pro-apoptotic effect of antiIGFBP-7 antibody was determined by flow cytometry.RESULTS:Immunocytochemistry and Western blotting revealed that the expression of IGFBP-7 in TGF-β1 treated HSC was significantly up-regulated compared to that in the control group.In addition,fibronectin,collagen and α-SMA also showed enhanced expression in accordance with the transdifferentiation process in a dose-dependent manner to some extent.Moreover,flow cytometry suggested that anti-IGFBP-7 antibody induced apoptosis of activated HSC,which is responsible for the development of liver fibrosis,and may represent a novel pathway and target for therapeutic intervention.CONCLUSION:IGFBP-7 showed increased expression in activated HSC and played an important role in the activation and transdifferentiation process of HSC.AntiIGFBP-7 antibody may ameliorate liver fibrogenesis.展开更多
基金Supported by the Shaanxi Province Traditional Chinese Medicine Project(No.SZY-KJCYC-2023-028)。
文摘AIM:To investigate the expression and effect of histone deacetylase 7(HDAC7)in human retinal microvascular endothelial cells(HRMECs)under high glucose condition and related mechanism,and the expression of HDAC7 in the retinal tissue in diabetic rats.METHODS:The expression of HDAC7 in HRMECs under high glucose and the retinal tissue from normal or diabetic rats were detected with immunohistochemistry and Western blot.LV-shHDAC7 HRMECs were used to study the effect of HDAC7 on cell activities.Cell count kit-8(CCK-8),5-ethynyl2’-deoxyuridine(EdU),flow cytometry,scratch test,Transwell test and tube formation assay were used to examine the ability of cell proliferation,migration,and angiogenesis.Finally,a preliminary exploration of its mechanism was performed by Western blot.RESULTS:The expression of HDAC7 was both upregulated in retinal tissues of diabetic rats and high glucosetreated HRMECs.Down-regulation of HDAC7 expression significantly reduced the ability of proliferation,migration,and tube formation,and reversed the high glucose-induced high expression of CDK1/Cyclin B1 and vascular endothelial growth factor in high glucose-treated HRMECs.CONCLUSION:High glucose can up-regulate the expression of HDAC7 in HRMECs.Down-regulation of HDAC7 can inhibit HRMECs activities.HDAC7 is proposed to be involved in pathogenesis of diabetic retinopathy and a therapeutic target.
基金Natural Science Foundation of Hainan Province(No.820RC776)。
文摘Objective:To determine the destructive ability of oxocrebanine,an anti-breast cancer active compound obtained from Stephania hainanensis H.S.Lo et Y.Tsoong,on microtubule network,and investigate the effect of oxocrebanine on microtubule network homeostasis at both molecular and cellular levels.Methods:the EBI site competition method and molecular docking method were used to determine the occupation of the microtubule site of oxocrebanine.Western Blot was used to detect the effect of oxocrebanine on microtubule-associated proteins including STAT3,PAK1,CAMK4,and PKA.Results:The results of EBI site competition assay showed that the binding of EBI toβ-Tubulin covalent fusions produced adducts that appeared in regions of lower molecular weight thanβ-tubulin(ctrl 2).Molecular docking results showed that oxocrebanine could occupy the colchicine site of microtubule proteins.As revealed by Western Blot,the expression of STAT3 protein was decreased after MCF-7 cells have been treated with low,medium,and high concentration of oxocrebanine or the positive drug taxol for 48 h(P<0.01).The expression levels of PAK1 and Camk4 proteins aslo showed significant reductions(P<0.05,or P<0.01).Oxocrebanine also decreased the PKA protein in MCF-7 cells compared to the control group(P<0.01).Conclusions:Oxocrebanine,a ligand that binds at the colchicine site of tubulin,perturbs tubulin polymerization and causes mitosis in MCF-7 cells,thus leading to MCF-7 cell death.Oxocrebanine may promote microtubule dynamics through stathmin by inhibiting the expression levels of STAT3,PAK1,Camk4,and PKA proteins in MCF-7 cells.Oxocrebanine interfers with spindle formation,and ultimately causes mitotic catastrophe in MCF-7 cells.
基金supported by the National Natural Science Foundation of China,No.81973501the Natural Science Foundation of Shandong Province,No.ZR2019MH009(both to YLG).
文摘Studies on ischemia/reperfusion(I/R)injury suggest that exogenous neural stem cells(NSCs)are ideal candidates for stem cell therapy reperfusion injury.However,NSCs are difficult to obtain owing to ethical limitations.In addition,the survival,differentiation,and proliferation rates of transplanted exogenous NSCs are low,which limit their clinical application.Our previous study showed that neuregulin1β(NRG1β)alleviated cerebral I/R injury in rats.In this study,we aimed to induce human umbilical cord mesenchymal stem cells into NSCs and investigate the improvement effect and mechanism of NSCs pretreated with 10 nM NRG1βon PC12 cells injured by oxygen-glucose deprivation/reoxygenation(OGD/R).Our results found that 5 and 10 nM NRG1βpromoted the generation and proliferation of NSCs.Co-culture of NSCs and PC12 cells under condition of OGD/R showed that pretreatment of NSCs with NRG1βimproved the level of reactive oxygen species,malondialdehyde,glutathione,superoxide dismutase,nicotinamide adenine dinucleotide phosphate,and nuclear factor erythroid 2-related factor 2(Nrf2)and mitochondrial damage in injured PC12 cells;these indexes are related to ferroptosis.Research has reported that p53 and solute carrier family 7 member 11(SLC7A11)play vital roles in ferroptosis caused by cerebral I/R injury.Our data show that the expression of p53 was increased and the level of glutathione peroxidase 4(GPX4)was decreased after RNA interference-mediated knockdown of SLC7A11 in PC12 cells,but this change was alleviated after co-culturing NSCs with damaged PC12 cells.These findings suggest that NSCs pretreated with NRG1βexhibited neuroprotective effects on PC12 cells subjected to OGD/R through influencing the level of ferroptosis regulated by p53/SLC7A11/GPX4 pathway.
基金Supported by DP2M DIKTI(Directorate of higher Education)Ministry of Education Indonesia trough HKI research grant 2011
文摘Objective:To evaluate of hesperidin to overcome resistance of doxorubicin in MCF-7 resistant doxorubicin cells(MCF-7/Dox)in cytotoxicity apoptosis and P-glycoprotein(Pgp)expression in combination with doxorubicin.Methods:The cytotoxic properties.50%inhibition concentration(IC_(50))and its combination with doxorubicin in MCF-7 cell lines resistant to doxorubicin(MCF-7/Dox)cells were determined using MTT assay.Apoptosis induction was examined by double staining assay using ethidium bromide-acridine orange.Immunocytochemistry assay was performed to determine the level and localization of Pgp.Results:Single treatment of hesperidin showed cytotoxic activity on MCF-7/Dox cells with IC_(50)value of 11μmol/L.Thus,combination treatment from hesperidin and doxorubicin showed addictive and antagonist effect(CI>1.0).Hesperidin did not increase the apoptotic induction,but decreased the Pgp expressions level when combined with doxorubicin in low concentration.Conclusions:Hesperidin has cytotoxic effect on MCF-7/Dox cells with IC_(50)of 11μmol/L.Hesperidin did not increased the apoptotic induction combined with doxorubicin.Cochemotherapy application of doxorubicin and hesperidin on MCF-7/Dox cells showed synergism effect through inhibition of Pgp expression.
基金Supported by Ministry of Finance of Indonesia through Education Fund Management Institution(LPDP)under a contract number PRJ-541/LPDP.3/2016
文摘Objective:To determine the structure of triterpenoid isolated from avocado seeds and the cytotoxic effect on MCF-7 and Hep G2 cells.Methods:The powder sample was macerated with ethanol,followed with separation of the extract by column chromatography.The target compound was monitored on thin layer chromatography plate and reagent Lieberman–Buchard.The isolated compound was characterized by spectral analysis,mainly ultraviolet,infrared,and liquid chromatographymass spectroscopy and their spectroscopic data with those reported in literature were compared.In vitro cytotoxic activity was investigated against Vero,MCF-7,and Hep G2 cell lines using MTT assay.Results:A triterpenoid compound was isolated from ethanol extract.The extracts,fraction(F3),and the isolated compound showed a significant cytotoxic activity against all investigated cell lines.MTT assay showed that the triterpenoid isolate inhibited cell proliferation of MCF-7 and Hep G2 cell line with the IC50 values of 62 mg/m L and 12 mg/m L,respectively,and was safe to normal cells.Conclusions:The results of the present study reveal that triterpenoid from avocado seeds have the potential for further development as anticancer agents.
基金supported by grants from The National Maritime Bureau Public Science and Technology Research Funds Projects of Ocean(No.201005013)the Wuhan Municipal Science and Technology Research Project of China(No.201260523185)
文摘Fucoidan is an active component of seaweed, which inhibits proliferation and induces apoptosis of several tumor cells while the detailed mechanisms underlying this process are still not clear. In this study, the effect of Fucoidan on the proliferation and apoptosis of human breast cancer MCF-7 cells and the molecular mechanism of Fucoidan action were investigated. Viable cell number of MCF-7 cells was decreased by Fucoidan treatment in a dose-dependent manner as measured by MTT assay. Fucoidan treatment resulted in G1 phase arrest of MCF-7 cells as revealed by flow cytometry, which was associated with the decrease in the gene expression of cyclin D 1 and CDK-4. Annexin V/PI staining results showed that the number of apoptotic cells was associated with regulation of cytochrome C, cas- pase-8, Bax and Bcl-2 at transcriptional and translational levels. Both morphologic observation and Hoechst 33258 assay results confirmed the pro-apoptotic effect of Fucoidan. Meanwhile, the ROS pro- duction was also increased by Fucoidan treatment, which suggested that Fucoidan induced oxidative damage in MCF-7 cells. The results of present study demonstrated that Fucoidan could induce GI phase arrest and apoptosis in MCF-7 cells through regulating the cell cycle and apoptosis-related genes or proteins expression, and ROS generation is also involved in these processes.
基金Supported by National Natural Science Foundation of China,No.81172375Scientific Research Fund of Hunan Normal University,No.81105
文摘AIM:To evaluate whether 8-bromo-7-methoxychrysin(BrMC),a synthetic analogue of chrysin,inhibits the properties of cancer stem cells derived from the human liver cancer MHCC97 cell line and to determine the potential mechanisms.METHODS:CD133+cells were sorted from the MHCC97 cell line by magnetic activated cell sorting,and amplified in stem cell-conditioned medium to obtain the enriched CD133+sphere forming cells(SFCs).The stem cell properties of CD133+SFCs were validated by the tumorsphere formation assay in vitro and the xenograft nude mouse model in vivo,and termed liver cancer stem cells(LCSCs).The effects of BrMC on LCSCs in vitro were evaluated by MTT assay,tumorsphere formation assay and transwell chamber assay.The effects of BrMC on LCSCs in vivo were determined using a primary and secondary xenograft model in Balb/c-nu mice.Expressions of the stem cell markers,epithelialmesenchymal transition(EMT)markers andβ-catenin protein were analyzed by western blotting or immunohistochemical analysis.RESULTS:CD133+SFCs exhibited stem-like cell properties of tumorsphere formation and tumorigenesis capacity in contrast to the parental MHCC97 cells.We found that BrMC preferentially inhibited proliferation and self-renewal of LCSCs(P<0.05).Furthermore,BrMC significantly suppressed EMT and invasion of LCSCs.Moreover,BrMC could efficaciously eliminate LCSCs in vivo.Interestingly,we showed that BrMC decreased the expression ofβ-catenin in LCSCs.Silencing ofβ-catenin by small interfering RNA could synergize the inhibition of self-renewal of LCSCs induced by BrMC,while Wnt3a treatment antagonized the inhibitory effects of BrMC.CONCLUSION:BrMC can inhibit the functions and characteristics of LCSCs derived from the liver cancer MHCC97 cell line through downregulation ofβ-catenin expression.
基金Supported by Grants from the Major State Basic Research Development Program of China 973 Program,No.2007CB512402National Natural Science Foundation of China,No.31100634+1 种基金Natural Science Foundation of Jiangsu Province,No.BK2010161"333" Project of Wuxi City,Jiangsu Province,No.CAE00901-09
文摘AIM: To investigate the expression of B7-H1 in human colorectal carcinoma (CRC) to define its regulating ef- fects on T cells in tumor microenvironment.
基金supported by the National Natural Science Foundation of China (No.30671508)by State Key Laboratory for Agrobiotechnology of China (No.2009SKLAB07-5)
文摘Objective: To investigate whether dietary daidzein interact with endogenous 17β-Estradiol (E2) to give rise to additive or inhibitory effects on proliferation and apoptosis in breast cancer cells. Methods: Cell cycle distribution and apoptosis induction were analyzed by using flow cytometry when breast cancer cell lines MCF-7 were cotreated with daidzein (1, 5 μmol/L) and E2 (0.1-10 nmol/L) for 5 days. Whether daidzein could alter E2-modulated mRNA expression of estrogen receptor alpha (ERα), estrogen receptor beta (ERI3) and ERβ-estrogen response element (ERE) dependent transcription was investigated by RT-PCR and luciferase induction assays. The effects of daidzein on E2-modulated expression of proapoptotic p53, bax and antiapoptotic bcl-2 at both mRNA and protein levels were also investigated by RT-PCR and Western blot. Results: Daidzein enhanced the antiapoptotic effect in an Ea dose-dependent manner, but had no effect on E2-induced proliferation. Daidzein antagonized E2-induced ERβ mRNA expression and ERβ-ERE dependent transcription. In addition, daidzein only antagonized E2-upregulated expression of p53 and bax, but had no effect on E2-upregulated expression of bcl-2. Conclusion: Daidzein enhances the antiapoptotic effect of E2 on breast cancer cells by inhibiting E2-mediated p53-bax proapoptotic pathway. These results suggest that dietary daidzein may enhance deleterious effect of endogenous E2 in hormone-dependent breast cancer.
文摘Aim: To investigate the regulatory function of Cox7a2 on steroidogenesis and the mechanism involved in TM3 mouse Leydig cells. Methods: The cDNA of Cox7a2 was cloned from TM3 mouse Leydig cells. It was subcloned to pDsRed- Express-N 1 and transfected back into TM3 mouse Leydig cells for Cox7a2 overexpression by transient gene transfection. Steroidogenesis affected by overexpressed Cox7a2 was studied by ELISA. To elicit the mechanism of this effect, expression of steroidogenic acute regulatory (STAR) protein and reactive oxygen species (ROS) were examined by Western blot and fluorometer, respectively. Results: The cDNA of Cox7a2 (249 bp) was cloned from Leydig cells and confirmed by DNA sequencing. After constructed pDsRed-Express-N1-Cox7a2 was transfected back into TM3 mouse Leydig cells, Cox7a2 inhibited not only luteinizing hormone (LH)-induced secretion of testosterone but also the expression of StAR protein. At the same time, Cox7a2 increased the activity of ROS in TM3 mouse Leydig cells. Conclusion: Cox7a2 inhibited LH-induced StAR protein expression, and consequent testosterone production, at least in part, by increasing ROS activity in TM3 mouse Leydig cells.
基金supported by grants from the Natural Science Foundation of Jiangsu Province,China (No. BK2006241)the Foundation for Talents in Six Fields of Jiangsu Province (No. 07-B-038)
文摘BACKGROUND: Pancreatic stellate cells (PSCs) play a major role in promoting pancreatic fibrosis. Transforming growth factor beta 1 (TGF-beta 1) is a critical mediator of this process. This study aimed to determine the expression of the Smad3 and Smad7 genes in the process of PSC activation, and explore the mechanisms of chronic pancreatitis. METHODS: The expressions of Smad3 and Smad7 in PSCs before and after TGF-beta 1 treatment were detected by reverse transcription-polymerase chain reaction and Western blotting analysis. Smad3 expression was detected in PSCs after treatment with 5 ng/ml of TGF-beta 1 for 24 hours. RESULTS: Smad7 expression was decreased in TGF-beta 1 -activated PSCs (P<0.05) in a dose-dependent manner. When TGF-beta 1 concentration reached 10 ng/ml, the expression of p-Smad3, Smad3, and Smad7 was inhibited (P<0.05). CONCLUSIONS: TGF-beta 1 promotes the expression of Smad3 and inhibits the expression of Smad7 during the activation of PSCs. In contrast, high-dose TGF-beta 1 downregulates the expression of Smad3 in completely activated PSCs.
基金Supported by National Natural Science Foundation of China No.30740031,No.30871146the New Century Excellent Talent of the Ministry of Education of China,No.NCET-06-0264
文摘AIM:To investigate the role of insulin-like growth factor binding protein-7 (IGFBP-7) in the activation and transdifferentiation of hepatic stellate cells (HSC) in vitro.METHODS:Rat HSC-T6 cells were cultured in separate dishes and treated with various concentration of transforming growth factor (TGF)-β1,IGFBP-7 or antiIGFBP-7 antibody for 24 h.The supernatant or a cytoplasm suspension was obtained from cultured HSC,followed by transfer of cells to form cell-coated dishes.Immunocytochemistry and Western blotting were used to analyze the expression of IGFBP-7 induced by TGF-β1 and the level of fibronectin,collagen and α-smooth muscle actin (SMA).The pro-apoptotic effect of antiIGFBP-7 antibody was determined by flow cytometry.RESULTS:Immunocytochemistry and Western blotting revealed that the expression of IGFBP-7 in TGF-β1 treated HSC was significantly up-regulated compared to that in the control group.In addition,fibronectin,collagen and α-SMA also showed enhanced expression in accordance with the transdifferentiation process in a dose-dependent manner to some extent.Moreover,flow cytometry suggested that anti-IGFBP-7 antibody induced apoptosis of activated HSC,which is responsible for the development of liver fibrosis,and may represent a novel pathway and target for therapeutic intervention.CONCLUSION:IGFBP-7 showed increased expression in activated HSC and played an important role in the activation and transdifferentiation process of HSC.AntiIGFBP-7 antibody may ameliorate liver fibrogenesis.