Two kinds of UV curable polyurethane acrylate oligomers (PUPA and PUCA) were synthesized via the addition reaction between isophorone diisocyanate (IPDI) and polyethylene glycol monoacrylate (PEA6) or polycaprol...Two kinds of UV curable polyurethane acrylate oligomers (PUPA and PUCA) were synthesized via the addition reaction between isophorone diisocyanate (IPDI) and polyethylene glycol monoacrylate (PEA6) or polycaprolactone modified hydroxyethyl acrylate (PCLA2). The structures of PUPA and PUCA were characterized by Fourier transform infrared spectroscopy (FT-IR), IH nuclear magnetic resonance (^H NMR), gel permeation chromatography (GPC) and differential scanning calorimeter (DSC), and the thermal stability and dynamic mechanical thermal properties of their cured films were measured by thermogravimetric analysis (TGA) and dynamic mechanical analysis (DMA), respectively. The viscosity of the oligomers and mechanical properties of the cured films were also studied. The results show that both oligomers have narrow molecular weight distribution. The viscosity of PUPA is 2.310 Pa.s at 25 ℃, while that of PUCA is: up to 3.980 Pa-s. The UV cured PUPA and PUCA films have homogeneous phase structure, and the PUCA film shows higher glass transition temperature and storage modulus. Furthermore, the PUCA film possesses better mechanical properties than PUPA, while the latter shows better alkali resistance.展开更多
A novel ultraviolet (UV) curable aqueous dispersion polyurethane PDHA-PEDA-PU was synthesized based on isophorone diisocyanate (IPDI), polyester dihydric alcohol (PDHA), dimethylol propionic acid (DMPA), penta...A novel ultraviolet (UV) curable aqueous dispersion polyurethane PDHA-PEDA-PU was synthesized based on isophorone diisocyanate (IPDI), polyester dihydric alcohol (PDHA), dimethylol propionic acid (DMPA), pentaerythritol diacrylate (PEDA), 2-hydroxyethyl acrylate (HEA) and triethylamine (TEA). Acrylate groups were incorporated in the side and end of PDHA-PEDA-PU chain. The C=C content in the chain can be controlled easily through the change of IPDI/PDHA/PEDA ratio. Fourier transform infrared spectroscopy (FTIR) was used to identify the structure of prepolymer, aqueous dispersion and cured polyurethane. The curing rule of the polyurethane for different C=C content has been investigated depending on the change of C=C content during the curing process. The hardness, thermal stability and scrub resistance to MEK of UV cured PDHA-PEDA-PU were also discussed for the samples with different C=C content.展开更多
Two kinds of water-soluble and ultraviolet (UV) curable oligomers were synthesized and characterized. The oligomers were evaluated as resins for water-based UV curable coating. The rheology of the two oligomers' a...Two kinds of water-soluble and ultraviolet (UV) curable oligomers were synthesized and characterized. The oligomers were evaluated as resins for water-based UV curable coating. The rheology of the two oligomers' aqueous so-lutions was investigated in terms of solid fraction, pH dependence, and temperature dependence. The solutions were found to be Newtonian fluid showing rather low viscosity even at high solid fraction of 0.55. The drying process of the coatings and the properties of the cured coatings were studied by comparing them with water-dispersed UV-curable polyurethane methyl acrylate. It was evident that the water-soluble coating dried more slowly; and that the overall properties were inferior to those of the water-dispersed coating.展开更多
基金Project(2007168303) supported by Guangdong-Hong Kong Technology Cooperation Funding
文摘Two kinds of UV curable polyurethane acrylate oligomers (PUPA and PUCA) were synthesized via the addition reaction between isophorone diisocyanate (IPDI) and polyethylene glycol monoacrylate (PEA6) or polycaprolactone modified hydroxyethyl acrylate (PCLA2). The structures of PUPA and PUCA were characterized by Fourier transform infrared spectroscopy (FT-IR), IH nuclear magnetic resonance (^H NMR), gel permeation chromatography (GPC) and differential scanning calorimeter (DSC), and the thermal stability and dynamic mechanical thermal properties of their cured films were measured by thermogravimetric analysis (TGA) and dynamic mechanical analysis (DMA), respectively. The viscosity of the oligomers and mechanical properties of the cured films were also studied. The results show that both oligomers have narrow molecular weight distribution. The viscosity of PUPA is 2.310 Pa.s at 25 ℃, while that of PUCA is: up to 3.980 Pa-s. The UV cured PUPA and PUCA films have homogeneous phase structure, and the PUCA film shows higher glass transition temperature and storage modulus. Furthermore, the PUCA film possesses better mechanical properties than PUPA, while the latter shows better alkali resistance.
基金the National Natural Jiangsu Provincial Development Program acknowledged Science Foundation of China (No. 50273035) the of Science and Technology (No. BE2003105) are acknowledged.
文摘A novel ultraviolet (UV) curable aqueous dispersion polyurethane PDHA-PEDA-PU was synthesized based on isophorone diisocyanate (IPDI), polyester dihydric alcohol (PDHA), dimethylol propionic acid (DMPA), pentaerythritol diacrylate (PEDA), 2-hydroxyethyl acrylate (HEA) and triethylamine (TEA). Acrylate groups were incorporated in the side and end of PDHA-PEDA-PU chain. The C=C content in the chain can be controlled easily through the change of IPDI/PDHA/PEDA ratio. Fourier transform infrared spectroscopy (FTIR) was used to identify the structure of prepolymer, aqueous dispersion and cured polyurethane. The curing rule of the polyurethane for different C=C content has been investigated depending on the change of C=C content during the curing process. The hardness, thermal stability and scrub resistance to MEK of UV cured PDHA-PEDA-PU were also discussed for the samples with different C=C content.
文摘Two kinds of water-soluble and ultraviolet (UV) curable oligomers were synthesized and characterized. The oligomers were evaluated as resins for water-based UV curable coating. The rheology of the two oligomers' aqueous so-lutions was investigated in terms of solid fraction, pH dependence, and temperature dependence. The solutions were found to be Newtonian fluid showing rather low viscosity even at high solid fraction of 0.55. The drying process of the coatings and the properties of the cured coatings were studied by comparing them with water-dispersed UV-curable polyurethane methyl acrylate. It was evident that the water-soluble coating dried more slowly; and that the overall properties were inferior to those of the water-dispersed coating.