BACKGROUND The aim of this study was to investigate the complex heterozygous mutations of ANK1 and SPTA1 in the same individual and improve our understanding of hereditary spherocytosis(HS)in children.We also hope to ...BACKGROUND The aim of this study was to investigate the complex heterozygous mutations of ANK1 and SPTA1 in the same individual and improve our understanding of hereditary spherocytosis(HS)in children.We also hope to promote the application of gene detection technology in children with HS,with the goals of identifying more related gene mutations,supporting the acquisition of improved molecular genetic information to further reveal the pathogenesis of HS in children,and providing important guidance for the diagnosis,treatment,and prevention of HS in children.CASE SUMMARY A 1-year and 5-month-old patient presented jaundice during the neonatal period,mild anemia 8 months later,splenic enlargement at 1 year and 5 months,and brittle red blood cell permeability.Genetic testing was performed on the patient,their parents,and sister.Swiss Model software was used to predict the protein structure of complex heterozygous mutations in ANK1 and SPTA1.Genetic testing revealed that the patient harbored a new mutation in the ANK1 gene from the father and a mutation in the SPTA1 gene from the mother.Combined with the clinical symptoms of the children,it is suggested that the newly discovered complex heterozygous mutations of ANK1 and SPTA1 may be the cause,providing important guidance for revealing the pathogenesis,diagnosis,treatment,and promotion of gene detection technology in children with HS.CONCLUSION This case involves an unreported complex heterozygous mutation of ANK1 and SPTA1,which provides a reference for exploring HS.展开更多
Von Meyenburg complexes(VMCs) are a rare type of ductal plate malformation. We herein report two Chinese families with VMCs, and the suspicious gene mutation of this disease. Proband A was a 62-year-old woman with abn...Von Meyenburg complexes(VMCs) are a rare type of ductal plate malformation. We herein report two Chinese families with VMCs, and the suspicious gene mutation of this disease. Proband A was a 62-year-old woman with abnormal echographic presentation of the liver. She received magnetic resonance imaging(MRI) examination and liver biopsy, and the results showed she had VMCs. Histologically proved hepatocellular carcinoma was found 1 year after the diagnosis of VMCs. Proband B was a 57-year-old woman with intrahepatic diffuselesions displayed by abdominal ultrasonography. Her final diagnoses were VMCs, congenital hepatic fibrosis, and hepatitis B surface e antigen-negative chronic hepatitis B after a series of examinations. Then, all the family members of both proband A and proband B were screened for VMCs by MRI or ultrasonography. The results showed that four of the 11 family members from two families, including two males and two females, were diagnosed with VMCs. DNA samples were extracted from the peripheral blood of those 11 individuals of two VMCs pedigrees and subjected to polymerase chain reaction amplification of the polycystic kidney and hepatic disease 1(PKHD1) gene. Two different mutation loci were identified. Heterozygous mutations located in exon 32(c.4280 delG, p.Gly1427 ValfsX 6) in family A and exon 28(c.3118 C>T, p.Arg1040 Ter) in family B were detected. We speculate that PKHD1 gene mutations may be responsible for the development of VMCs.展开更多
Energy transfers in two kinds of peripheral light-harvesting complexes (LH2) of Rhodobacter sphaeroides (RS) 601 are studied by using femtosecond pump^probe spectroscopy with tunable laser wavelength at room tempe...Energy transfers in two kinds of peripheral light-harvesting complexes (LH2) of Rhodobacter sphaeroides (RS) 601 are studied by using femtosecond pump^probe spectroscopy with tunable laser wavelength at room temperature. These two complexes are native LH2 (RS601) and green carotenoid mutated LH2 (GM309). The obtained results demonstrate that, compared with spheroidenes with ten conjugated double bonds in native RS601, carotenoid in GM309 containing neurosporenes with nine conjugated double bonds can lead to a reduction in energy transfer rate in the B800-to-B850 band and the disturbance in the energy relaxation processes within the excitonic B850 band.展开更多
AIM: To investigate mitochondrial factors associated with Leber hereditary optic neuropathy (LHON) through complete sequencing and analysis of the mitochondrial genome of Chinese patients with this disease. METHODS: T...AIM: To investigate mitochondrial factors associated with Leber hereditary optic neuropathy (LHON) through complete sequencing and analysis of the mitochondrial genome of Chinese patients with this disease. METHODS: Two unrelated southern Chinese families with LHON and 10 matched healthy controls were recruited, and their entire mitochondrial DNA (mtDNA) was amplified and sequenced with the universal M13 primer. Then DNA sequence analysis and variation identification were performed by DNAssist and Chromas 2 software and compared with authoritative databases such as Mitomap. RESULTS: Mutational analysis of mtDNA in these two Chinese pedigrees revealed one common LHON-associated mutation, G11778A (Arg -> His), in the MT-ND4 gene. In addition, there were two secondary mutations in Pedigree 1: C34971 (Ala -> Val), and C3571T (Leu -> Phe) in the MT-ND1 gene, which have not been reported; and two secondary mutations occurred in Pedigree 2: A10398G (Thr -> Ala) in the MT-ND3 gene, and T14502C (Ile -> Val) in the MT-ND6 gene. Three polymorphisms, A73G, G94A and A263G in the mtDNA control region, were also found. CONCLUSION: Our study confirmed that the known MT-ND4* G11778A mutation is the most significant cause of LHON. The C3497T and C3571T mutations in Pedigree 1 were also both at hot-spots of MT-ND1; they may affect the respiratory chain in coordination with the primary mutation G11778A. In Pedigree 2, the two secondary mutations A10398G of MT-ND3 and T14502C of MT-ND6 may influence mitochondrial respiratory complex I, leading to the mitochondrial respiratory chain dysfunction which results in optic atrophy together with G11778A. Therefore, not only the common primary LHON mutation is responsible for the visual atrophy, but other secondary mtDNA mutations should also be considered when giving genetic counseling.展开更多
With the development of molecular pathology, many types of epidermal growth factor receptor(EGFR) mutations have been identified. The efficacy of EGFR tyrosine kinase inhibitors(EGFR-TKIs) in non-small cell lung c...With the development of molecular pathology, many types of epidermal growth factor receptor(EGFR) mutations have been identified. The efficacy of EGFR tyrosine kinase inhibitors(EGFR-TKIs) in non-small cell lung cancer(NSCLC) patients with different types of EGFR mutations, especially in patients with single rare mutations or complex mutations(co-occurrence of two or more different mutations), has not been fully understood. This study aimed to examine the efficacy of EGFR-TKIs in NSCLC patients with different types of EGFR mutations. Clinical data of 809 NSCLC patients who harbored different types of EGFR mutations and treated from January 2012 to October 2016 at Renmin Hospital and Zhongnan Hospital, Wuhan, were retrospectively reviewed. The clinical characteristics of these patients and the efficacy of EGFR-TKIs were analyzed. Among these patients, 377 patients had only the EGFR del-19 mutation, 362 patients the EGFR L858R mutation in exon 21, 33 patients single rare mutations and 37 patients complex mutations. Among these 809 patients, 239 patients were treated with EGFR-TKIs. In all the 239 patients, the disease control rate(DCR) was 93.7% with two patients(0.2%) achieving complete response(CR), the median progression free survival(PFS) was 13.0 months(95% confidence interval [CI], 11.6–14.4 months), and the median overall survival(OS) was 55.0 months(95% CI, 26.3–83.7 months). Subgroup analysis revealed that the DCR in patients harboring single rare or complex mutations of EGFR was significantly lower than in those with del-19 or L858 R mutation(P〈0.001). Patients with classic mutations(del-19 and/or L858 R mutations) demonstrated longer PFS(P〈0.001) and OS(P=0.017) than those with uncommon mutations(single rare and/or complex mutations). Furthermore, the patients with single rare mutations had shorter median OS than in those with other mutations. Multivariate Cox regression analysis identified that the type of EGFR mutations was an independent risk factor for PFS(hazard ratio [HR]=0.308, 95% CI, 0.191–0.494, P〈0.001) and OS(HR=0.221, 95% CI, 0.101–0.480, P〈0.001). The results suggest that the single rare or complex EGFR mutations confer inferior efficacy of EGFR-TKIs treatment to the classic mutations. The prognosis of the single rare EGFR mutations is depressing. EGFR-TKIs may be not a good choice for NSCLC patients with single rare mutations of EGFR. Further studies in these patients with uncommon mutations(especially for the patients with single rare mutations) are needed to determine a better precision treatment.展开更多
The presenilin genes(PSEN1 and PSEN2)are mainly responsible for causing early-onset familial Alzheimer’s disease,harboring~300 causative mutations,and representing~90%of all mutations associated with a very aggressiv...The presenilin genes(PSEN1 and PSEN2)are mainly responsible for causing early-onset familial Alzheimer’s disease,harboring~300 causative mutations,and representing~90%of all mutations associated with a very aggressive disease form.Presenilin 1 is the catalytic core of theγ-secretase complex that conducts the intramembranous proteolytic excision of multiple transmembrane proteins like the amyloid precursor protein,Notch-1,N-and E-cadherin,LRP,Syndecan,Delta,Jagged,CD44,ErbB4,and Nectin1a.Presenilin 1 plays an essential role in neural progenitor maintenance,neurogenesis,neurite outgrowth,synaptic function,neuronal function,myelination,and plasticity.Therefore,an imbalance caused by mutations in presenilin 1/γ-secretase might cause aberrant signaling,synaptic dysfunction,memory impairment,and increased Aβ42/Aβ40 ratio,contributing to neurodegeneration during the initial stages of Alzheimer’s disease pathogenesis.This review focuses on the neuronal differentiation dysregulation mediated by PSEN1 mutations in Alzheimer’s disease.Furthermore,we emphasize the importance of Alzheimer’s disease-induced pluripotent stem cells models in analyzing PSEN1 mutations implication over the early stages of the Alzheimer’s disease pathogenesis throughout neuronal differentiation impairment.展开更多
Living objects have complex internal and external interactions. The complexity is regulated and controlled by homeostasis, which is the balance of multiple opposing influences. The environmental effects finally guide ...Living objects have complex internal and external interactions. The complexity is regulated and controlled by homeostasis, which is the balance of multiple opposing influences. The environmental effects finally guide the self-organized structure. The living systems are open, dynamic structures performing random, stationary, stochastic, self-organizing processes. The self-organizing procedure is defined by the spatial-temporal fractal structure, which is self-similar both in space and time. The system’s complexity appears in its energetics, which tries the most efficient use of the available energies;for that, it organizes various well-connected networks. The controller of environmental relations is the Darwinian selection on a long-time scale. The energetics optimize the healthy processes tuned to the highest efficacy and minimal loss (minimalization of the entropy production). The organism is built up by morphogenetic rules and develops various networks from the genetic level to the organism. The networks have intensive crosstalk and form a balance in the Nash equilibrium, which is the homeostatic state in healthy conditions. Homeostasis may be described as a Nash equilibrium, which ensures energy distribution in a “democratic” way regarding the functions of the parts in the complete system. Cancer radically changes the network system in the organism. Cancer is a network disease. Deviation from healthy networking appears at every level, from genetic (molecular) to cells, tissues, organs, and organisms. The strong proliferation of malignant tissue is the origin of most of the life-threatening processes. The weak side of cancer development is the change of complex information networking in the system, being vulnerable to immune attacks. Cancer cells are masters of adaptation and evade immune surveillance. This hiding process can be broken by electromagnetic nonionizing radiation, for which the malignant structure has no adaptation strategy. Our objective is to review the different sides of living complexity and use the knowledge to fight against cancer.展开更多
Tuberous sclerosis complex (TSC) is a relatively common autosomal dominant genetic disorder affecting l/14,000-1/6000 Western populations.The incidence of TSC in Chinese population is still unknown although case rep...Tuberous sclerosis complex (TSC) is a relatively common autosomal dominant genetic disorder affecting l/14,000-1/6000 Western populations.The incidence of TSC in Chinese population is still unknown although case reports of Chinese TSC patients were documented. The main clinical features of TSC include seizures,mental retardation,and the development ofhamartomas in multiple organs such as the skin,brain,lung,heart,and kidney.Indeed,the disease virtually manifests in every organ. Two causative genes for TSC,TSC 1 gene on chromosome 9q34 and TSC2 gene on chromosome16p13,have been identified in 1997 and 1993 respectively.Approximately,70% of cases of TSC are de novo mutations. Chinese TSC patients are more likely to have TSC2 missense and frame shift mutations.Here,we record one Chinese TSC family and it is novel frame shift mutation of TSC2.展开更多
Primary pigmented nodular adrenocortical disease (PPNAD) causes adrenocorticotropic hormone (ACTH)-independent Cushing's syndrome (CS),which is the most frequent endocrine manifestation of Carney complex (CNC...Primary pigmented nodular adrenocortical disease (PPNAD) causes adrenocorticotropic hormone (ACTH)-independent Cushing's syndrome (CS),which is the most frequent endocrine manifestation of Carney complex (CNC).[1] In the disease process of PPNAD,both presadrenal glands are involved and feature small brown-black nodules separated by the atrophic adrenal cortex.展开更多
In this article,we aim to provide a thorough review of the Bayesian-inference-based methods applied to Hepatitis B Virus(HBV),Hepatitis C Virus(HCV),and Human Immunodeficiency Virus(HIV)studies with a focus on the det...In this article,we aim to provide a thorough review of the Bayesian-inference-based methods applied to Hepatitis B Virus(HBV),Hepatitis C Virus(HCV),and Human Immunodeficiency Virus(HIV)studies with a focus on the detection of the viral mutations and various problems which are correlated to these mutations.It is particularly difficult to detect and interpret these interacting mutation patterns,but by using Bayesian statistical modeling,it provides a groundbreaking opportunity to solve these problems.Here we summarize Bayesian-based statistical approaches,including the Bayesian Variable Partition(BVP)model,Bayesian Network(BN),and the Recursive Model Selection(RMS)procedure,which are designed to detect the mutations and to make further inferences to the comprehensive dependence structure among the interactions.BVP,BN,and RMS in which Markov Chain Monte Carlo(MCMC)methods are used have been widely applied in HBV,HCV,and HIV studies in the recent years.We also provide a summary of the Bayesian methods’applications toward these viruses’studies,where several important and useful results have been discovered.We envisage the applications of more modified Bayesian methods to other infectious diseases and cancer cells that will be following with critical medical results before long.展开更多
To the Editor:Tuberous sclerosis complex (TSC),with the birth incidence of 1:6000,[1] is an autosomal dominant inherited,multi-system disorder characterized by cellular hyperplasia and tissue dysplasia,among which,ren...To the Editor:Tuberous sclerosis complex (TSC),with the birth incidence of 1:6000,[1] is an autosomal dominant inherited,multi-system disorder characterized by cellular hyperplasia and tissue dysplasia,among which,renal angiomyolipoma (AML) is one common comorbidity.However,malignancy of renal AML is rare.Herein,we shared a case of malignancy of renal AML from TSC in a young man.展开更多
The major histocompatibility complex(MHC)is closely associated with numerous diseases,but its high degree of polymorphism complicates the discovery of disease-associated variants.In principle,recombination and de novo...The major histocompatibility complex(MHC)is closely associated with numerous diseases,but its high degree of polymorphism complicates the discovery of disease-associated variants.In principle,recombination and de novo mutations are two critical factors responsible for MHC polymorphisms.However,direct evidence for this hypothesis is lacking.Here,we report the generation of fine-scale MHC recombination and de novo mutation maps of~5 Mb by deep sequencing(>100×)of the MHC genome for 17 MHC recombination and 30 non-recombination Han Chinese families(a total of 190 individuals).Recombination hotspots and Han-specific breakpoints are located in close proximity at haplotype block boundaries.The average MHC de novo mutation rate is higher than the genome-wide de novo mutation rate,particularly in MHC recombinant individuals.Notably,mutation and recombination generated polymorphisms are located within and outside linkage disequilibrium regions of the MHC,respectively,and evolution of the MHC locus was mainly controlled by positive selection.These findings provide insights on the evolutionary causes of the MHC diversity and may facilitate the identification of disease-associated genetic variants.展开更多
基金Supported by The Science and Technology Department of Sichuan Province,No.2021JDKP0015.
文摘BACKGROUND The aim of this study was to investigate the complex heterozygous mutations of ANK1 and SPTA1 in the same individual and improve our understanding of hereditary spherocytosis(HS)in children.We also hope to promote the application of gene detection technology in children with HS,with the goals of identifying more related gene mutations,supporting the acquisition of improved molecular genetic information to further reveal the pathogenesis of HS in children,and providing important guidance for the diagnosis,treatment,and prevention of HS in children.CASE SUMMARY A 1-year and 5-month-old patient presented jaundice during the neonatal period,mild anemia 8 months later,splenic enlargement at 1 year and 5 months,and brittle red blood cell permeability.Genetic testing was performed on the patient,their parents,and sister.Swiss Model software was used to predict the protein structure of complex heterozygous mutations in ANK1 and SPTA1.Genetic testing revealed that the patient harbored a new mutation in the ANK1 gene from the father and a mutation in the SPTA1 gene from the mother.Combined with the clinical symptoms of the children,it is suggested that the newly discovered complex heterozygous mutations of ANK1 and SPTA1 may be the cause,providing important guidance for revealing the pathogenesis,diagnosis,treatment,and promotion of gene detection technology in children with HS.CONCLUSION This case involves an unreported complex heterozygous mutation of ANK1 and SPTA1,which provides a reference for exploring HS.
基金Supported by Pilot Project of Fujian Science and Technology Department,No.2015Y0057Fujian Medical Innovation Project,No.2018-ZQN-54Science and Technology Project of Fujian Education Department,No.JAT160211
文摘Von Meyenburg complexes(VMCs) are a rare type of ductal plate malformation. We herein report two Chinese families with VMCs, and the suspicious gene mutation of this disease. Proband A was a 62-year-old woman with abnormal echographic presentation of the liver. She received magnetic resonance imaging(MRI) examination and liver biopsy, and the results showed she had VMCs. Histologically proved hepatocellular carcinoma was found 1 year after the diagnosis of VMCs. Proband B was a 57-year-old woman with intrahepatic diffuselesions displayed by abdominal ultrasonography. Her final diagnoses were VMCs, congenital hepatic fibrosis, and hepatitis B surface e antigen-negative chronic hepatitis B after a series of examinations. Then, all the family members of both proband A and proband B were screened for VMCs by MRI or ultrasonography. The results showed that four of the 11 family members from two families, including two males and two females, were diagnosed with VMCs. DNA samples were extracted from the peripheral blood of those 11 individuals of two VMCs pedigrees and subjected to polymerase chain reaction amplification of the polycystic kidney and hepatic disease 1(PKHD1) gene. Two different mutation loci were identified. Heterozygous mutations located in exon 32(c.4280 delG, p.Gly1427 ValfsX 6) in family A and exon 28(c.3118 C>T, p.Arg1040 Ter) in family B were detected. We speculate that PKHD1 gene mutations may be responsible for the development of VMCs.
基金Project supported by the National Natural Science Foundation of China (Grant No 10274013).
文摘Energy transfers in two kinds of peripheral light-harvesting complexes (LH2) of Rhodobacter sphaeroides (RS) 601 are studied by using femtosecond pump^probe spectroscopy with tunable laser wavelength at room temperature. These two complexes are native LH2 (RS601) and green carotenoid mutated LH2 (GM309). The obtained results demonstrate that, compared with spheroidenes with ten conjugated double bonds in native RS601, carotenoid in GM309 containing neurosporenes with nine conjugated double bonds can lead to a reduction in energy transfer rate in the B800-to-B850 band and the disturbance in the energy relaxation processes within the excitonic B850 band.
基金Supported by the National Natural Science Foundation of China(No.J0710043)
文摘AIM: To investigate mitochondrial factors associated with Leber hereditary optic neuropathy (LHON) through complete sequencing and analysis of the mitochondrial genome of Chinese patients with this disease. METHODS: Two unrelated southern Chinese families with LHON and 10 matched healthy controls were recruited, and their entire mitochondrial DNA (mtDNA) was amplified and sequenced with the universal M13 primer. Then DNA sequence analysis and variation identification were performed by DNAssist and Chromas 2 software and compared with authoritative databases such as Mitomap. RESULTS: Mutational analysis of mtDNA in these two Chinese pedigrees revealed one common LHON-associated mutation, G11778A (Arg -> His), in the MT-ND4 gene. In addition, there were two secondary mutations in Pedigree 1: C34971 (Ala -> Val), and C3571T (Leu -> Phe) in the MT-ND1 gene, which have not been reported; and two secondary mutations occurred in Pedigree 2: A10398G (Thr -> Ala) in the MT-ND3 gene, and T14502C (Ile -> Val) in the MT-ND6 gene. Three polymorphisms, A73G, G94A and A263G in the mtDNA control region, were also found. CONCLUSION: Our study confirmed that the known MT-ND4* G11778A mutation is the most significant cause of LHON. The C3497T and C3571T mutations in Pedigree 1 were also both at hot-spots of MT-ND1; they may affect the respiratory chain in coordination with the primary mutation G11778A. In Pedigree 2, the two secondary mutations A10398G of MT-ND3 and T14502C of MT-ND6 may influence mitochondrial respiratory complex I, leading to the mitochondrial respiratory chain dysfunction which results in optic atrophy together with G11778A. Therefore, not only the common primary LHON mutation is responsible for the visual atrophy, but other secondary mtDNA mutations should also be considered when giving genetic counseling.
基金supported by grants from the National Natural Science Foundation of China(No.81372407)Health and Family Planning Scientific Research Project of Hubei Province(No.WJ2017Q007)
文摘With the development of molecular pathology, many types of epidermal growth factor receptor(EGFR) mutations have been identified. The efficacy of EGFR tyrosine kinase inhibitors(EGFR-TKIs) in non-small cell lung cancer(NSCLC) patients with different types of EGFR mutations, especially in patients with single rare mutations or complex mutations(co-occurrence of two or more different mutations), has not been fully understood. This study aimed to examine the efficacy of EGFR-TKIs in NSCLC patients with different types of EGFR mutations. Clinical data of 809 NSCLC patients who harbored different types of EGFR mutations and treated from January 2012 to October 2016 at Renmin Hospital and Zhongnan Hospital, Wuhan, were retrospectively reviewed. The clinical characteristics of these patients and the efficacy of EGFR-TKIs were analyzed. Among these patients, 377 patients had only the EGFR del-19 mutation, 362 patients the EGFR L858R mutation in exon 21, 33 patients single rare mutations and 37 patients complex mutations. Among these 809 patients, 239 patients were treated with EGFR-TKIs. In all the 239 patients, the disease control rate(DCR) was 93.7% with two patients(0.2%) achieving complete response(CR), the median progression free survival(PFS) was 13.0 months(95% confidence interval [CI], 11.6–14.4 months), and the median overall survival(OS) was 55.0 months(95% CI, 26.3–83.7 months). Subgroup analysis revealed that the DCR in patients harboring single rare or complex mutations of EGFR was significantly lower than in those with del-19 or L858 R mutation(P〈0.001). Patients with classic mutations(del-19 and/or L858 R mutations) demonstrated longer PFS(P〈0.001) and OS(P=0.017) than those with uncommon mutations(single rare and/or complex mutations). Furthermore, the patients with single rare mutations had shorter median OS than in those with other mutations. Multivariate Cox regression analysis identified that the type of EGFR mutations was an independent risk factor for PFS(hazard ratio [HR]=0.308, 95% CI, 0.191–0.494, P〈0.001) and OS(HR=0.221, 95% CI, 0.101–0.480, P〈0.001). The results suggest that the single rare or complex EGFR mutations confer inferior efficacy of EGFR-TKIs treatment to the classic mutations. The prognosis of the single rare EGFR mutations is depressing. EGFR-TKIs may be not a good choice for NSCLC patients with single rare mutations of EGFR. Further studies in these patients with uncommon mutations(especially for the patients with single rare mutations) are needed to determine a better precision treatment.
基金supported by the Consejo Nacional de Ciencia y Tecnología Scholarship 711893(to MAH)and 711874(to EER)。
文摘The presenilin genes(PSEN1 and PSEN2)are mainly responsible for causing early-onset familial Alzheimer’s disease,harboring~300 causative mutations,and representing~90%of all mutations associated with a very aggressive disease form.Presenilin 1 is the catalytic core of theγ-secretase complex that conducts the intramembranous proteolytic excision of multiple transmembrane proteins like the amyloid precursor protein,Notch-1,N-and E-cadherin,LRP,Syndecan,Delta,Jagged,CD44,ErbB4,and Nectin1a.Presenilin 1 plays an essential role in neural progenitor maintenance,neurogenesis,neurite outgrowth,synaptic function,neuronal function,myelination,and plasticity.Therefore,an imbalance caused by mutations in presenilin 1/γ-secretase might cause aberrant signaling,synaptic dysfunction,memory impairment,and increased Aβ42/Aβ40 ratio,contributing to neurodegeneration during the initial stages of Alzheimer’s disease pathogenesis.This review focuses on the neuronal differentiation dysregulation mediated by PSEN1 mutations in Alzheimer’s disease.Furthermore,we emphasize the importance of Alzheimer’s disease-induced pluripotent stem cells models in analyzing PSEN1 mutations implication over the early stages of the Alzheimer’s disease pathogenesis throughout neuronal differentiation impairment.
文摘Living objects have complex internal and external interactions. The complexity is regulated and controlled by homeostasis, which is the balance of multiple opposing influences. The environmental effects finally guide the self-organized structure. The living systems are open, dynamic structures performing random, stationary, stochastic, self-organizing processes. The self-organizing procedure is defined by the spatial-temporal fractal structure, which is self-similar both in space and time. The system’s complexity appears in its energetics, which tries the most efficient use of the available energies;for that, it organizes various well-connected networks. The controller of environmental relations is the Darwinian selection on a long-time scale. The energetics optimize the healthy processes tuned to the highest efficacy and minimal loss (minimalization of the entropy production). The organism is built up by morphogenetic rules and develops various networks from the genetic level to the organism. The networks have intensive crosstalk and form a balance in the Nash equilibrium, which is the homeostatic state in healthy conditions. Homeostasis may be described as a Nash equilibrium, which ensures energy distribution in a “democratic” way regarding the functions of the parts in the complete system. Cancer radically changes the network system in the organism. Cancer is a network disease. Deviation from healthy networking appears at every level, from genetic (molecular) to cells, tissues, organs, and organisms. The strong proliferation of malignant tissue is the origin of most of the life-threatening processes. The weak side of cancer development is the change of complex information networking in the system, being vulnerable to immune attacks. Cancer cells are masters of adaptation and evade immune surveillance. This hiding process can be broken by electromagnetic nonionizing radiation, for which the malignant structure has no adaptation strategy. Our objective is to review the different sides of living complexity and use the knowledge to fight against cancer.
文摘Tuberous sclerosis complex (TSC) is a relatively common autosomal dominant genetic disorder affecting l/14,000-1/6000 Western populations.The incidence of TSC in Chinese population is still unknown although case reports of Chinese TSC patients were documented. The main clinical features of TSC include seizures,mental retardation,and the development ofhamartomas in multiple organs such as the skin,brain,lung,heart,and kidney.Indeed,the disease virtually manifests in every organ. Two causative genes for TSC,TSC 1 gene on chromosome 9q34 and TSC2 gene on chromosome16p13,have been identified in 1997 and 1993 respectively.Approximately,70% of cases of TSC are de novo mutations. Chinese TSC patients are more likely to have TSC2 missense and frame shift mutations.Here,we record one Chinese TSC family and it is novel frame shift mutation of TSC2.
文摘Primary pigmented nodular adrenocortical disease (PPNAD) causes adrenocorticotropic hormone (ACTH)-independent Cushing's syndrome (CS),which is the most frequent endocrine manifestation of Carney complex (CNC).[1] In the disease process of PPNAD,both presadrenal glands are involved and feature small brown-black nodules separated by the atrophic adrenal cortex.
文摘In this article,we aim to provide a thorough review of the Bayesian-inference-based methods applied to Hepatitis B Virus(HBV),Hepatitis C Virus(HCV),and Human Immunodeficiency Virus(HIV)studies with a focus on the detection of the viral mutations and various problems which are correlated to these mutations.It is particularly difficult to detect and interpret these interacting mutation patterns,but by using Bayesian statistical modeling,it provides a groundbreaking opportunity to solve these problems.Here we summarize Bayesian-based statistical approaches,including the Bayesian Variable Partition(BVP)model,Bayesian Network(BN),and the Recursive Model Selection(RMS)procedure,which are designed to detect the mutations and to make further inferences to the comprehensive dependence structure among the interactions.BVP,BN,and RMS in which Markov Chain Monte Carlo(MCMC)methods are used have been widely applied in HBV,HCV,and HIV studies in the recent years.We also provide a summary of the Bayesian methods’applications toward these viruses’studies,where several important and useful results have been discovered.We envisage the applications of more modified Bayesian methods to other infectious diseases and cancer cells that will be following with critical medical results before long.
文摘To the Editor:Tuberous sclerosis complex (TSC),with the birth incidence of 1:6000,[1] is an autosomal dominant inherited,multi-system disorder characterized by cellular hyperplasia and tissue dysplasia,among which,renal angiomyolipoma (AML) is one common comorbidity.However,malignancy of renal AML is rare.Herein,we shared a case of malignancy of renal AML from TSC in a young man.
基金supported by grants from the National Key Basic Research Development Program of China(grants No.2009CB522401 and 2003CB515509,and AWS14C014)。
文摘The major histocompatibility complex(MHC)is closely associated with numerous diseases,but its high degree of polymorphism complicates the discovery of disease-associated variants.In principle,recombination and de novo mutations are two critical factors responsible for MHC polymorphisms.However,direct evidence for this hypothesis is lacking.Here,we report the generation of fine-scale MHC recombination and de novo mutation maps of~5 Mb by deep sequencing(>100×)of the MHC genome for 17 MHC recombination and 30 non-recombination Han Chinese families(a total of 190 individuals).Recombination hotspots and Han-specific breakpoints are located in close proximity at haplotype block boundaries.The average MHC de novo mutation rate is higher than the genome-wide de novo mutation rate,particularly in MHC recombinant individuals.Notably,mutation and recombination generated polymorphisms are located within and outside linkage disequilibrium regions of the MHC,respectively,and evolution of the MHC locus was mainly controlled by positive selection.These findings provide insights on the evolutionary causes of the MHC diversity and may facilitate the identification of disease-associated genetic variants.