In the framework of fighting against the poor quality medicines sold in developing countries using classical analytical methods easily accessible in those countries, four UV-Visible spectrophotometric methods for one ...In the framework of fighting against the poor quality medicines sold in developing countries using classical analytical methods easily accessible in those countries, four UV-Visible spectrophotometric methods for one antimalarial (quinine) and two antibiotics (amoxicillin and metronidazole) have been developed and validated according to the total error strategy using the accuracy profiles as a decision tool. The dosing range was 2 - 10 μg/mL (for quinine sulfate in tablet), 4 - 12 μg/mL (for quinine bichlorhydrate in oral drop-metronidazole benzaote in oral suspension) and 15 - 35 μg/mL (for amoxicillin trihydrate in capsule). The validated methods were then applied in determining the content of some analogous medicines sold in the Democratic Republic of Congo. Thus, the proposed UV-Visible spectrophotometric methods are simple and suitable to quantify quinine, amoxicillin and metronidazole in different pharmaceutical forms.展开更多
A method to retrieve ocean wave spectra from SAR images, named Parameterized First-guess Spectrum Method (PFSM), was proposed after interpretation of the theory to ocean wave imaging and analysis of the drawbacks of...A method to retrieve ocean wave spectra from SAR images, named Parameterized First-guess Spectrum Method (PFSM), was proposed after interpretation of the theory to ocean wave imaging and analysis of the drawbacks of the retrieving model generally used. In this method, with additional information and satellite parameters, the separating wave-number is first calculated to determine the maximum wave-number beyond which the linear relation can be used. The separating wave-number can be calculated using the additional information on wind velocity and parameters of SAR satellite. And then the SAR spectrum can be divided into SAR spectrum of wind wave and of swell according to the result of separating wave-number. The portion of SAR spectrum generated by wind wave, is used to search for the most suitable parameters of ocean wind wave spectrum, including propagation direction of ocean wave, phase speed of dominating wave and the angle spreading coefficient. The swell spectrum is acquired by directly inversing the linear relation of ocean wave spectrum to SAR spectrum given the portion of SAR spectrum generated by swell. We used the proposed method to retrieve the ocean wave spectrum from ERS-SAR data from the South China Sea and compared the result with altimeter data. The agreement indicates that the PFSM is reliable.展开更多
Relaxation time spectra (RTS) derived from time domain induced polarization data (TDIP) are helpful to assess oil reservoir pore structures. However, due to the sensitivity to the signal-to-noise ratio (SNR), th...Relaxation time spectra (RTS) derived from time domain induced polarization data (TDIP) are helpful to assess oil reservoir pore structures. However, due to the sensitivity to the signal-to-noise ratio (SNR), the inversion accuracy of the traditional singular value decomposition (SVD) inversion method reduces with a decrease of SNR. In order to enhance the inversion accuracy and improve robustness of the inversion method to the SNR, an improved inversion method, based on damping factor and spectrum component residual correction, is proposed in this study. The numerical inversion results show that the oscillation of the RTS derived from the SVD method increased with a decrease of SNR, which makes it impossible to get accurate inversion components. However, the SNR has little influence on inversion components of the improved method, and the RTS has high inversion accuracy and robustness. Moreover, RTS derived from core sample data is basically in accord with the pore-size distribution curve, and the RTS derived from the actual induced polarization logging data is smooth and continuous, which indicates that the improved method is practicable.展开更多
A novel cooperative sensing method is proposed in this paper. The proposed scheme adopts sensing creditability degree to characterize the impact of the distance and the channel parameters on the sensing result,and con...A novel cooperative sensing method is proposed in this paper. The proposed scheme adopts sensing creditability degree to characterize the impact of the distance and the channel parameters on the sensing result,and considers that each user has different average SNR and different decision threshold,by using General Nash Bargaining Solution (GNBS) strategy in Cooperative Game Theory (CGT),the detection performance for two-user case are derived. For multi-user case,the sensing performance is obtained with Hungarian method. Compared with the traditional schemes such as Nash Bargaining Solution (NBS) and AND,the proposed scheme covers all the factors mentioned above,and enhances the sensing rationality and reliability. Simulation results show that the proposed scheme can further improve the sensing performance and creditability.展开更多
This paper presents some methods that the standard acceleration design response spectra derived from the present China code for seismic design of buildings are transformed into the seismic demand spectra, and that the...This paper presents some methods that the standard acceleration design response spectra derived from the present China code for seismic design of buildings are transformed into the seismic demand spectra, and that the base shear force-roof displacement curve of structure is converted to the capacity spectrum of an equivalent single-degree-of-freedom (SDOF) system. The capacity spectrum method (CSM) is programmed by means of MATLABT.0 computer language. A dual lateral force resisting system of 10-story steel frame-steel plate shear walls (SPSW) is designed according to the corresponding China design codes. The base shear force-roof displacement curve of structure subjected to the monotonic increasing lateral inverse triangular load is obtained by applying the equivalent strip model to stimulate SPSW and by using the finite element analysis software SAP2000 to make Pushover analysis. The seismic performance of this dual system subjected to three different conditions, i.e. the 8-intensity frequently occurred earthquake, fortification earthquake and seldom occurred earthquake, is evaluated by CSM program. The excessive safety of steel frame-SPSW system designed according to the present China design codes is pointed out and a new design method is suggested.展开更多
A simplified multisupport response spectrum method is presented.The structural response is a sum of two components of a structure with a first natural period less than 2 s.The first component is the pseudostatic respo...A simplified multisupport response spectrum method is presented.The structural response is a sum of two components of a structure with a first natural period less than 2 s.The first component is the pseudostatic response caused by the inconsistent motions of the structural supports,and the second is the structural dynamic response to ground motion accelerations.This method is formally consistent with the classical response spectrum method,and the effects of multisupport excitation are considered for any modal response spectrum or modal superposition.If the seismic inputs at each support are the same,the support displacements caused by the pseudostatic response become rigid body displacements.The response spectrum in the case of multisupport excitations then reduces to that for uniform excitations.In other words,this multisupport response spectrum method is a modification and extension of the existing response spectrum method under uniform excitation.Moreover,most of the coherency coefficients in this formulation are simplified by approximating the ground motion excitation as white noise.The results indicate that this simplification can reduce the calculation time while maintaining accuracy.Furthermore,the internal forces obtained by the multisupport response spectrum method are compared with those produced by the traditional response spectrum method in two case studies of existing long-span structures.Because the effects of inconsistent support displacements are not considered in the traditional response spectrum method,the values of internal forces near the supports are underestimated.These regions are important potential failure points and deserve special attention in the seismic design of reticulated structures.展开更多
The uncertainty of nuclide libraries in the analysis of the gamma spectra of low-and intermediate-level radioactive waste(LILW)using existing methods produces unstable results.To address this problem,a novel spectral ...The uncertainty of nuclide libraries in the analysis of the gamma spectra of low-and intermediate-level radioactive waste(LILW)using existing methods produces unstable results.To address this problem,a novel spectral analysis method is proposed in this study.In this method,overlapping peaks are located using a continuous wavelet transform.An improved quadratic convolution method is proposed to calculate the widths of the peaks and establish a fourth-order filter model to estimate the Compton edge baseline with the overlapping peaks.Combined with the adaptive sensitive nonlinear iterative peak,this method can effectively subtracts the background.Finally,a function describing the peak shape as a filter is used to deconvolve the energy spectrum to achieve accurate qualitative and quantitative analyses of the nuclide without the aid of a nuclide library.Gamma spectrum acquisition experiments for standard point sources of Cs-137 and Eu-152,a segmented gamma scanning experiment for a 200 L standard drum,and a Monte Carlo simulation experiment for triple overlapping peaks using the closest energy of three typical LILW nuclides(Sb-125,Sb-124,and Cs-134)are conducted.The results of the experiments indicate that(1)the novel method and gamma vision(GV)with an accurate nuclide library have the same spectral analysis capability,and the peak area calculation error is less than 4%;(2)compared with the GV,the analysis results of the novel method are more stable;(3)the novel method can be applied to the activity measurement of LILW,and the error of the activity reconstruction at the equivalent radius is 2.4%;and(4)The proposed novel method can quantitatively analyze all nuclides in LILW without a nuclide library.This novel method can improve the accuracy and precision of LILW measurements,provide key technical support for the reasonable disposal of LILW,and ensure the safety of humans and the environment.展开更多
Based on analysis of NMR T2 spectral characteristics,a new method for identifying fluid properties by decomposing T2 spectrum through signal analysis has been proposed.Because T2 spectrum satisfies lognormal distribut...Based on analysis of NMR T2 spectral characteristics,a new method for identifying fluid properties by decomposing T2 spectrum through signal analysis has been proposed.Because T2 spectrum satisfies lognormal distribution on transverse relaxation time axis,the T2 spectrum can be decomposed into 2 to 5 independent component spectra by fitting the T2 spectrum with Gauss functions.By analyzing the free relaxation response characteristics of crude oil and formation water,the dynamic response characteristics of the core mutual drive between oil and water,the petrophysical significance of each component spectrum is clarified.T2 spectrum can be decomposed into clay bound water component spectrum,capillary bound fluid component spectrum,micropores fluid component spectrum and macropores fluid component spectrum.According to the nature of crude oil in the target area,the distribution range of T2 component spectral peaks of oil-bearing reservoir is 165-500 ms on T2 time axis.This range can be used to accurately identify fluid properties.This method has high adaptability in identifying complex oil and water layers in low porosity and permeability reservoirs.展开更多
<strong>Context:</strong> Substandard and falsified medicines are circulating in low-income countries mostly without any control. We availed a simple and not expensive UV-Vis spectroscopic method to evalua...<strong>Context:</strong> Substandard and falsified medicines are circulating in low-income countries mostly without any control. We availed a simple and not expensive UV-Vis spectroscopic method to evaluate the quality of tramadol in Kisangani before and during the Covid-19 period. <strong>Methods:</strong> For the analytical quantitative method, an experimental design was applied to set up the optimal levels of the selected factors, namely, pH of dissolution medium, type of cuvette, and wavelength. Taking into account the capsule pharmaceutical formulation within 80 - 120 μg·mL<sup>-1</sup> concentration range, we analyzed 89 tramadol samples from pharmacies and hospitals of the six Kisangani municipalities. <strong>Results:</strong> pH showed a significant effect on absorbance, whereas quartz cuvette and wavelength did not. A typical 100 μg·mL<sup>-1</sup> tramadol solution gave an absorbance of 0.64 at 272 nm. Validation highlighted a matrix effect observed with a 6% bias. A correction factor of 0.9372 allowed to improve the accuracy profile, which were then totally included within the 10% acceptance limits. Quality control revealed that 25 samples out of 89 were not compliant in terms of manufacturing license, registration status in DRC and content as well. <strong>Conclusion:</strong> This study showed that the strengthening of analytical strategy in Kisangani is a need.展开更多
To make the quantitative results of nuclear magnetic resonance(NMR) transverse relaxation(T;) spectrums reflect the type and pore structure of reservoir more directly, an unsupervised clustering method was developed t...To make the quantitative results of nuclear magnetic resonance(NMR) transverse relaxation(T;) spectrums reflect the type and pore structure of reservoir more directly, an unsupervised clustering method was developed to obtain the quantitative pore structure information from the NMR T;spectrums based on the Gaussian mixture model(GMM). Firstly, We conducted the principal component analysis on T;spectrums in order to reduce the dimension data and the dependence of the original variables. Secondly, the dimension-reduced data was fitted using the GMM probability density function, and the model parameters and optimal clustering numbers were obtained according to the expectation-maximization algorithm and the change of the Akaike information criterion. Finally, the T;spectrum features and pore structure types of different clustering groups were analyzed and compared with T;geometric mean and T;arithmetic mean. The effectiveness of the algorithm has been verified by numerical simulation and field NMR logging data. The research shows that the clustering results based on GMM method have good correlations with the shape and distribution of the T;spectrum, pore structure, and petroleum productivity, providing a new means for quantitative identification of pore structure, reservoir grading, and oil and gas productivity evaluation.展开更多
UV-Vis spectrum and the third-order nonlinear optical properties of the chiral camphor-derived β-diketonate have been studied at the B3LYP/6-31G* level. The results showed that the introduction of electron-drawing g...UV-Vis spectrum and the third-order nonlinear optical properties of the chiral camphor-derived β-diketonate have been studied at the B3LYP/6-31G* level. The results showed that the introduction of electron-drawing group -CF3 and -C3F7 on β-diketonate made the strongest absorption peak red-shift and the lowest energy absorption blue-shied. Introduction of -OC2H5 on the benzene or pyridine ring made the lowest energy absorption blue-shift. When the -C2H3 was introduced on the benzene or pyridine ring, the lowest energy absorption was red-shifted. Introduction of electron-donating group on β-diketonate can enlarge their nonlinear optical properties. On the contrary, the introduction of electron-drawing group dropped it down.展开更多
Spectrum sensing is the fundamental task for Cognitive Radio (CR). To overcome the challenge of high sampling rate in traditional spectral estimation methods, Compressed Sensing (CS) theory is developed. A sparsity an...Spectrum sensing is the fundamental task for Cognitive Radio (CR). To overcome the challenge of high sampling rate in traditional spectral estimation methods, Compressed Sensing (CS) theory is developed. A sparsity and compression ratio joint adjustment algorithm for compressed spectrum sensing in CR network is investigated, with the hypothesis that the sparsity level is unknown as priori knowledge at CR terminals. As perfect spectrum reconstruction is not necessarily required during spectrum detection process, the proposed algorithm only performs a rough estimate of sparsity level. Meanwhile, in order to further reduce the sensing measurement, different compression ratios for CR terminals with varying Signal-to-Noise Ratio (SNR) are considered. The proposed algorithm, which optimizes the compression ratio as well as the estimated sparsity level, can greatly reduce the sensing measurement without degrading the detection performance. It also requires less steps of iteration for convergence. Corroborating simulation results are presented to testify the effectiveness of the proposed algorithm for collaborative spectrum sensing.展开更多
The effects of ground motion spatial variability(GMSV)or fluid-structure interaction(FSI)on the seismic responses of deep-water bridges have been extensively examined.However,there are few studies on the seismic perfo...The effects of ground motion spatial variability(GMSV)or fluid-structure interaction(FSI)on the seismic responses of deep-water bridges have been extensively examined.However,there are few studies on the seismic performance of bridges considering GMSV and FSI effects simultaneously.In this study,the original multiple-support response spectrum(MSRS)method is extended to consider FSI effect for seismic analysis of deep-water bridges.The solution of hydrodynamic pressure on a pier is obtained using the radiation wave theory,and the FSI-MSRS formulation is derived according to the random vibration theory.The influence of FSI effect on the related coefficients is analyzed.A five-span steel-concrete continuous beam bridge is adopted to conduct the numerical simulations.Different load conditions are designed to investigate the variation of the bridge responses when considering the GMSV and FSI effects.The results indicate that the incoherence effect and wave passage effect decrease the bridge responses with a maximum percentage of 86%,while the FSI effect increases the responses with a maximum percentage of 26%.The GMSV and FSI effects should be included in the seismic design of deep-water bridges.展开更多
The neutron spectrum unfolding by Bonner sphere spectrometer(BSS) is considered a complex multidimensional model,which requires complex mathematical methods to solve the first kind of Fredholm integral equation. In or...The neutron spectrum unfolding by Bonner sphere spectrometer(BSS) is considered a complex multidimensional model,which requires complex mathematical methods to solve the first kind of Fredholm integral equation. In order to solve the problem of the maximum likelihood expectation maximization(MLEM) algorithm which is easy to suffer the pitfalls of local optima and the particle swarm optimization(PSO) algorithm which is easy to get unreasonable flight direction and step length of particles, which leads to the invalid iteration and affect efficiency and accuracy, an improved PSO-MLEM algorithm, combined of PSO and MLEM algorithm, is proposed for neutron spectrum unfolding. The dynamic acceleration factor is used to balance the ability of global and local search, and improves the convergence speed and accuracy of the algorithm. Firstly, the Monte Carlo method was used to simulated the BSS to obtain the response function and count rates of BSS. In the simulation of count rate, four reference spectra from the IAEA Technical Report Series No. 403 were used as input parameters of the Monte Carlo method. The PSO-MLEM algorithm was used to unfold the neutron spectrum of the simulated data and was verified by the difference of the unfolded spectrum to the reference spectrum. Finally, the 252Cf neutron source was measured by BSS, and the PSO-MLEM algorithm was used to unfold the experimental neutron spectrum.Compared with maximum entropy deconvolution(MAXED), PSO and MLEM algorithm, the PSO-MLEM algorithm has fewer parameters and automatically adjusts the dynamic acceleration factor to solve the problem of local optima. The convergence speed of the PSO-MLEM algorithm is 1.4 times and 3.1 times that of the MLEM and PSO algorithms. Compared with PSO, MLEM and MAXED, the correlation coefficients of PSO-MLEM algorithm are increased by 33.1%, 33.5% and 1.9%, and the relative mean errors are decreased by 98.2%, 97.8% and 67.4%.展开更多
Using the asymptotic iteration method, we obtain the S-wave solution for a short-range three-parameter central potential with 1/r singularity and with a non-orbital barrier. To the best of our knowledge, this is the f...Using the asymptotic iteration method, we obtain the S-wave solution for a short-range three-parameter central potential with 1/r singularity and with a non-orbital barrier. To the best of our knowledge, this is the first attempt at calculating the energy spectrum for this potential, which was introduced by H. Bahlouli and A. D. Alhaidari and for which they obtained the “potential parameter spectrum”. Our results are also independently verified using a direct method of diagonalizing the Hamiltonian matrix in the J-matrix basis.展开更多
Neutron spectrum should be measured before test samples are irradiated.Neutron spectrum in an irradiation chamber of a research reactor was measured by using activation method when the reactor is in normal operation u...Neutron spectrum should be measured before test samples are irradiated.Neutron spectrum in an irradiation chamber of a research reactor was measured by using activation method when the reactor is in normal operation under 2 MW.Sixteen kinds of non-fission foils(19 reaction channels) were selected,of which 10 were sensitive to thermal and intermediate energy regions,while the others were of different threshold energy and sensitive to fast energy regions.By measuring the foil radioactivity,the neutron spectrum was unfolded with the iterative methods SAND-Ⅱ and MSIT.Finally,shielding corrections of group cross-section and main factors affecting the calculation accuracy were studied and the uncertainty of solution was analyzed using the Monte Carlo method in the process of SAND-Ⅱ.展开更多
The earthquake size distribution is generally considered to obey the Gutenberg Richter (GR) law. We have introduced the concept of the b value spectrum based on the moment method to investigate the deviation of t...The earthquake size distribution is generally considered to obey the Gutenberg Richter (GR) law. We have introduced the concept of the b value spectrum based on the moment method to investigate the deviation of the actual magnitude distribution of earthquakes from this law. This enables us to describe characteristic features of the magnitude frequency distribution of earthquakes. We found also a simple relation between the η value and the b value spectrum. Analysis using this scheme showed that the actual size distributions of earthquakes have large variations from case to case and sometimes deviate considerably from the widely assumed the GR formula.展开更多
The rainflow counting method is a reasonable cyclecounting procedure for fatigue life calculation and simulation testing of structures.It defines cycles as closed stress /strain hysteresis loops.Application of the rai...The rainflow counting method is a reasonable cyclecounting procedure for fatigue life calculation and simulation testing of structures.It defines cycles as closed stress /strain hysteresis loops.Application of the rainflow counting method requires a data processing of the loading spectrum,which consists of the elimination of non-peak value data points,load time histories adjustment and loop extraction.In the data processing of the loading spectrum,if a stress point is neither the peak nor the valley,it will be identified and eliminated from the loading spectrum.Generally,the loading process is idealized as a single peak-valley straight line.But in actually,there are polylines or nearly straight lines between peaks and valleys which can't be ignored.Therefore,in the process of eliminating such data points,it will produce error in method itself.To reduce the error produced by the traditional method itself,a new method which can well simplify the polylines in data processing of loading spectrum is proposed in this paper.Comparing with the original approximation method,the proposed method has higher precision.展开更多
This paper presents a new procedure to transform an SSI system into an equivalent SDOF system using twice equivalence. A pushover analysis procedure based on the capacity spectrum method for buildings with SSI effects...This paper presents a new procedure to transform an SSI system into an equivalent SDOF system using twice equivalence. A pushover analysis procedure based on the capacity spectrum method for buildings with SSI effects (PASSI) is then established based on the equivalent SDOF system, and the modified response spectrum and equivalent capacity spectrum are obtained. Furthermore, the approximate formulas to obtain the dynamic stiffness of foundations are suggested. Three steel buildings with different story heights (3, 9 and 20) including SSI effects are analyzed under two far-field and two near-field historical records and an artificial seismic time history using the two PASSI procedures and the nonlinear response history analysis (NLhRHA) method. The results are compared and discussed. Finally, combined with seismic design response spectrum, the nonlinear seismic response of a 9-story building with SSI effects is analyzed using the PASSI procedures, and its seismic performance is evaluated according to the Chinese 'Code for Seismic Design of Buildings. The feasibility of the proposed procedure is verified.展开更多
文摘In the framework of fighting against the poor quality medicines sold in developing countries using classical analytical methods easily accessible in those countries, four UV-Visible spectrophotometric methods for one antimalarial (quinine) and two antibiotics (amoxicillin and metronidazole) have been developed and validated according to the total error strategy using the accuracy profiles as a decision tool. The dosing range was 2 - 10 μg/mL (for quinine sulfate in tablet), 4 - 12 μg/mL (for quinine bichlorhydrate in oral drop-metronidazole benzaote in oral suspension) and 15 - 35 μg/mL (for amoxicillin trihydrate in capsule). The validated methods were then applied in determining the content of some analogous medicines sold in the Democratic Republic of Congo. Thus, the proposed UV-Visible spectrophotometric methods are simple and suitable to quantify quinine, amoxicillin and metronidazole in different pharmaceutical forms.
基金Supported by the High-Tech Research and Development Program of China (863 Program, No. 2001AA633070 2003AA604040)the National Basic Research Program of China (973 Program. No. 2005CB422307)
文摘A method to retrieve ocean wave spectra from SAR images, named Parameterized First-guess Spectrum Method (PFSM), was proposed after interpretation of the theory to ocean wave imaging and analysis of the drawbacks of the retrieving model generally used. In this method, with additional information and satellite parameters, the separating wave-number is first calculated to determine the maximum wave-number beyond which the linear relation can be used. The separating wave-number can be calculated using the additional information on wind velocity and parameters of SAR satellite. And then the SAR spectrum can be divided into SAR spectrum of wind wave and of swell according to the result of separating wave-number. The portion of SAR spectrum generated by wind wave, is used to search for the most suitable parameters of ocean wind wave spectrum, including propagation direction of ocean wave, phase speed of dominating wave and the angle spreading coefficient. The swell spectrum is acquired by directly inversing the linear relation of ocean wave spectrum to SAR spectrum given the portion of SAR spectrum generated by swell. We used the proposed method to retrieve the ocean wave spectrum from ERS-SAR data from the South China Sea and compared the result with altimeter data. The agreement indicates that the PFSM is reliable.
基金supported by a project from the Youth Science Foundation of the National Natural Science Foundation of China (11104089)
文摘Relaxation time spectra (RTS) derived from time domain induced polarization data (TDIP) are helpful to assess oil reservoir pore structures. However, due to the sensitivity to the signal-to-noise ratio (SNR), the inversion accuracy of the traditional singular value decomposition (SVD) inversion method reduces with a decrease of SNR. In order to enhance the inversion accuracy and improve robustness of the inversion method to the SNR, an improved inversion method, based on damping factor and spectrum component residual correction, is proposed in this study. The numerical inversion results show that the oscillation of the RTS derived from the SVD method increased with a decrease of SNR, which makes it impossible to get accurate inversion components. However, the SNR has little influence on inversion components of the improved method, and the RTS has high inversion accuracy and robustness. Moreover, RTS derived from core sample data is basically in accord with the pore-size distribution curve, and the RTS derived from the actual induced polarization logging data is smooth and continuous, which indicates that the improved method is practicable.
基金Supported by the National High Technology Research and Development Program of China (863 Program,No.2009AA01-Z241)the National Natural Science Foundation of China (No.60772062)
文摘A novel cooperative sensing method is proposed in this paper. The proposed scheme adopts sensing creditability degree to characterize the impact of the distance and the channel parameters on the sensing result,and considers that each user has different average SNR and different decision threshold,by using General Nash Bargaining Solution (GNBS) strategy in Cooperative Game Theory (CGT),the detection performance for two-user case are derived. For multi-user case,the sensing performance is obtained with Hungarian method. Compared with the traditional schemes such as Nash Bargaining Solution (NBS) and AND,the proposed scheme covers all the factors mentioned above,and enhances the sensing rationality and reliability. Simulation results show that the proposed scheme can further improve the sensing performance and creditability.
基金Project (No. 50578099) supported by the National Natural ScienceFoundation of China
文摘This paper presents some methods that the standard acceleration design response spectra derived from the present China code for seismic design of buildings are transformed into the seismic demand spectra, and that the base shear force-roof displacement curve of structure is converted to the capacity spectrum of an equivalent single-degree-of-freedom (SDOF) system. The capacity spectrum method (CSM) is programmed by means of MATLABT.0 computer language. A dual lateral force resisting system of 10-story steel frame-steel plate shear walls (SPSW) is designed according to the corresponding China design codes. The base shear force-roof displacement curve of structure subjected to the monotonic increasing lateral inverse triangular load is obtained by applying the equivalent strip model to stimulate SPSW and by using the finite element analysis software SAP2000 to make Pushover analysis. The seismic performance of this dual system subjected to three different conditions, i.e. the 8-intensity frequently occurred earthquake, fortification earthquake and seldom occurred earthquake, is evaluated by CSM program. The excessive safety of steel frame-SPSW system designed according to the present China design codes is pointed out and a new design method is suggested.
基金Major Program of National Science Foundation of China Under Grant No.90715005Program for New Century Excellent Talents in University Under Grant No. NCET-07-0186Doctoral Fund of Ministry of Education of China Under Grant No.200802860007
文摘A simplified multisupport response spectrum method is presented.The structural response is a sum of two components of a structure with a first natural period less than 2 s.The first component is the pseudostatic response caused by the inconsistent motions of the structural supports,and the second is the structural dynamic response to ground motion accelerations.This method is formally consistent with the classical response spectrum method,and the effects of multisupport excitation are considered for any modal response spectrum or modal superposition.If the seismic inputs at each support are the same,the support displacements caused by the pseudostatic response become rigid body displacements.The response spectrum in the case of multisupport excitations then reduces to that for uniform excitations.In other words,this multisupport response spectrum method is a modification and extension of the existing response spectrum method under uniform excitation.Moreover,most of the coherency coefficients in this formulation are simplified by approximating the ground motion excitation as white noise.The results indicate that this simplification can reduce the calculation time while maintaining accuracy.Furthermore,the internal forces obtained by the multisupport response spectrum method are compared with those produced by the traditional response spectrum method in two case studies of existing long-span structures.Because the effects of inconsistent support displacements are not considered in the traditional response spectrum method,the values of internal forces near the supports are underestimated.These regions are important potential failure points and deserve special attention in the seismic design of reticulated structures.
基金supported by the National Natural Science Foundation of China(Nos.12205190,11805121)the Science and Technology Commission of Shanghai Municipality(No.21ZR1435400).
文摘The uncertainty of nuclide libraries in the analysis of the gamma spectra of low-and intermediate-level radioactive waste(LILW)using existing methods produces unstable results.To address this problem,a novel spectral analysis method is proposed in this study.In this method,overlapping peaks are located using a continuous wavelet transform.An improved quadratic convolution method is proposed to calculate the widths of the peaks and establish a fourth-order filter model to estimate the Compton edge baseline with the overlapping peaks.Combined with the adaptive sensitive nonlinear iterative peak,this method can effectively subtracts the background.Finally,a function describing the peak shape as a filter is used to deconvolve the energy spectrum to achieve accurate qualitative and quantitative analyses of the nuclide without the aid of a nuclide library.Gamma spectrum acquisition experiments for standard point sources of Cs-137 and Eu-152,a segmented gamma scanning experiment for a 200 L standard drum,and a Monte Carlo simulation experiment for triple overlapping peaks using the closest energy of three typical LILW nuclides(Sb-125,Sb-124,and Cs-134)are conducted.The results of the experiments indicate that(1)the novel method and gamma vision(GV)with an accurate nuclide library have the same spectral analysis capability,and the peak area calculation error is less than 4%;(2)compared with the GV,the analysis results of the novel method are more stable;(3)the novel method can be applied to the activity measurement of LILW,and the error of the activity reconstruction at the equivalent radius is 2.4%;and(4)The proposed novel method can quantitatively analyze all nuclides in LILW without a nuclide library.This novel method can improve the accuracy and precision of LILW measurements,provide key technical support for the reasonable disposal of LILW,and ensure the safety of humans and the environment.
基金Supported by the China National Science and Technology Major Project(2016ZX05050)
文摘Based on analysis of NMR T2 spectral characteristics,a new method for identifying fluid properties by decomposing T2 spectrum through signal analysis has been proposed.Because T2 spectrum satisfies lognormal distribution on transverse relaxation time axis,the T2 spectrum can be decomposed into 2 to 5 independent component spectra by fitting the T2 spectrum with Gauss functions.By analyzing the free relaxation response characteristics of crude oil and formation water,the dynamic response characteristics of the core mutual drive between oil and water,the petrophysical significance of each component spectrum is clarified.T2 spectrum can be decomposed into clay bound water component spectrum,capillary bound fluid component spectrum,micropores fluid component spectrum and macropores fluid component spectrum.According to the nature of crude oil in the target area,the distribution range of T2 component spectral peaks of oil-bearing reservoir is 165-500 ms on T2 time axis.This range can be used to accurately identify fluid properties.This method has high adaptability in identifying complex oil and water layers in low porosity and permeability reservoirs.
文摘<strong>Context:</strong> Substandard and falsified medicines are circulating in low-income countries mostly without any control. We availed a simple and not expensive UV-Vis spectroscopic method to evaluate the quality of tramadol in Kisangani before and during the Covid-19 period. <strong>Methods:</strong> For the analytical quantitative method, an experimental design was applied to set up the optimal levels of the selected factors, namely, pH of dissolution medium, type of cuvette, and wavelength. Taking into account the capsule pharmaceutical formulation within 80 - 120 μg·mL<sup>-1</sup> concentration range, we analyzed 89 tramadol samples from pharmacies and hospitals of the six Kisangani municipalities. <strong>Results:</strong> pH showed a significant effect on absorbance, whereas quartz cuvette and wavelength did not. A typical 100 μg·mL<sup>-1</sup> tramadol solution gave an absorbance of 0.64 at 272 nm. Validation highlighted a matrix effect observed with a 6% bias. A correction factor of 0.9372 allowed to improve the accuracy profile, which were then totally included within the 10% acceptance limits. Quality control revealed that 25 samples out of 89 were not compliant in terms of manufacturing license, registration status in DRC and content as well. <strong>Conclusion:</strong> This study showed that the strengthening of analytical strategy in Kisangani is a need.
基金Supported by the National Natural Science Foundation of China (42174142)National Science and Technology Major Project (2017ZX05039-002)+2 种基金Operation Fund of China National Petroleum Corporation Logging Key Laboratory (2021DQ20210107-11)Fundamental Research Funds for Central Universities (19CX02006A)Major Science and Technology Project of China National Petroleum Corporation (ZD2019-183-006)。
文摘To make the quantitative results of nuclear magnetic resonance(NMR) transverse relaxation(T;) spectrums reflect the type and pore structure of reservoir more directly, an unsupervised clustering method was developed to obtain the quantitative pore structure information from the NMR T;spectrums based on the Gaussian mixture model(GMM). Firstly, We conducted the principal component analysis on T;spectrums in order to reduce the dimension data and the dependence of the original variables. Secondly, the dimension-reduced data was fitted using the GMM probability density function, and the model parameters and optimal clustering numbers were obtained according to the expectation-maximization algorithm and the change of the Akaike information criterion. Finally, the T;spectrum features and pore structure types of different clustering groups were analyzed and compared with T;geometric mean and T;arithmetic mean. The effectiveness of the algorithm has been verified by numerical simulation and field NMR logging data. The research shows that the clustering results based on GMM method have good correlations with the shape and distribution of the T;spectrum, pore structure, and petroleum productivity, providing a new means for quantitative identification of pore structure, reservoir grading, and oil and gas productivity evaluation.
基金supported by the National Natural Science Foundation of China(21172161)
文摘UV-Vis spectrum and the third-order nonlinear optical properties of the chiral camphor-derived β-diketonate have been studied at the B3LYP/6-31G* level. The results showed that the introduction of electron-drawing group -CF3 and -C3F7 on β-diketonate made the strongest absorption peak red-shift and the lowest energy absorption blue-shied. Introduction of -OC2H5 on the benzene or pyridine ring made the lowest energy absorption blue-shift. When the -C2H3 was introduced on the benzene or pyridine ring, the lowest energy absorption was red-shifted. Introduction of electron-donating group on β-diketonate can enlarge their nonlinear optical properties. On the contrary, the introduction of electron-drawing group dropped it down.
基金Supported by the National Natural Science Foundation of China (No. 61102066)China Postdoctoral Science Foundation (No. 2012M511365)the Scientific Research Project of Zhejiang Provincial Education Department (No.Y201119890)
文摘Spectrum sensing is the fundamental task for Cognitive Radio (CR). To overcome the challenge of high sampling rate in traditional spectral estimation methods, Compressed Sensing (CS) theory is developed. A sparsity and compression ratio joint adjustment algorithm for compressed spectrum sensing in CR network is investigated, with the hypothesis that the sparsity level is unknown as priori knowledge at CR terminals. As perfect spectrum reconstruction is not necessarily required during spectrum detection process, the proposed algorithm only performs a rough estimate of sparsity level. Meanwhile, in order to further reduce the sensing measurement, different compression ratios for CR terminals with varying Signal-to-Noise Ratio (SNR) are considered. The proposed algorithm, which optimizes the compression ratio as well as the estimated sparsity level, can greatly reduce the sensing measurement without degrading the detection performance. It also requires less steps of iteration for convergence. Corroborating simulation results are presented to testify the effectiveness of the proposed algorithm for collaborative spectrum sensing.
基金National Natural Science Foundation of China under Grant Nos.51427901 and 51678407Tianjin Municipal Education Commission under Grant No.2021KJ055Fundamental Research Funds for the Central Universities of China under Grant No.2000560616。
文摘The effects of ground motion spatial variability(GMSV)or fluid-structure interaction(FSI)on the seismic responses of deep-water bridges have been extensively examined.However,there are few studies on the seismic performance of bridges considering GMSV and FSI effects simultaneously.In this study,the original multiple-support response spectrum(MSRS)method is extended to consider FSI effect for seismic analysis of deep-water bridges.The solution of hydrodynamic pressure on a pier is obtained using the radiation wave theory,and the FSI-MSRS formulation is derived according to the random vibration theory.The influence of FSI effect on the related coefficients is analyzed.A five-span steel-concrete continuous beam bridge is adopted to conduct the numerical simulations.Different load conditions are designed to investigate the variation of the bridge responses when considering the GMSV and FSI effects.The results indicate that the incoherence effect and wave passage effect decrease the bridge responses with a maximum percentage of 86%,while the FSI effect increases the responses with a maximum percentage of 26%.The GMSV and FSI effects should be included in the seismic design of deep-water bridges.
基金supported by the National Natural science Foundation of China (No. 42127807)the Sichuan Science and Technology Program (No. 2020YJ0334)the Sichuan Science and Technology Breeding Program (No. 2022041)。
文摘The neutron spectrum unfolding by Bonner sphere spectrometer(BSS) is considered a complex multidimensional model,which requires complex mathematical methods to solve the first kind of Fredholm integral equation. In order to solve the problem of the maximum likelihood expectation maximization(MLEM) algorithm which is easy to suffer the pitfalls of local optima and the particle swarm optimization(PSO) algorithm which is easy to get unreasonable flight direction and step length of particles, which leads to the invalid iteration and affect efficiency and accuracy, an improved PSO-MLEM algorithm, combined of PSO and MLEM algorithm, is proposed for neutron spectrum unfolding. The dynamic acceleration factor is used to balance the ability of global and local search, and improves the convergence speed and accuracy of the algorithm. Firstly, the Monte Carlo method was used to simulated the BSS to obtain the response function and count rates of BSS. In the simulation of count rate, four reference spectra from the IAEA Technical Report Series No. 403 were used as input parameters of the Monte Carlo method. The PSO-MLEM algorithm was used to unfold the neutron spectrum of the simulated data and was verified by the difference of the unfolded spectrum to the reference spectrum. Finally, the 252Cf neutron source was measured by BSS, and the PSO-MLEM algorithm was used to unfold the experimental neutron spectrum.Compared with maximum entropy deconvolution(MAXED), PSO and MLEM algorithm, the PSO-MLEM algorithm has fewer parameters and automatically adjusts the dynamic acceleration factor to solve the problem of local optima. The convergence speed of the PSO-MLEM algorithm is 1.4 times and 3.1 times that of the MLEM and PSO algorithms. Compared with PSO, MLEM and MAXED, the correlation coefficients of PSO-MLEM algorithm are increased by 33.1%, 33.5% and 1.9%, and the relative mean errors are decreased by 98.2%, 97.8% and 67.4%.
文摘Using the asymptotic iteration method, we obtain the S-wave solution for a short-range three-parameter central potential with 1/r singularity and with a non-orbital barrier. To the best of our knowledge, this is the first attempt at calculating the energy spectrum for this potential, which was introduced by H. Bahlouli and A. D. Alhaidari and for which they obtained the “potential parameter spectrum”. Our results are also independently verified using a direct method of diagonalizing the Hamiltonian matrix in the J-matrix basis.
基金Supported by"Strategic Priority Research Program"of the Chinese Academy of Science(No.XDA02001003)
文摘Neutron spectrum should be measured before test samples are irradiated.Neutron spectrum in an irradiation chamber of a research reactor was measured by using activation method when the reactor is in normal operation under 2 MW.Sixteen kinds of non-fission foils(19 reaction channels) were selected,of which 10 were sensitive to thermal and intermediate energy regions,while the others were of different threshold energy and sensitive to fast energy regions.By measuring the foil radioactivity,the neutron spectrum was unfolded with the iterative methods SAND-Ⅱ and MSIT.Finally,shielding corrections of group cross-section and main factors affecting the calculation accuracy were studied and the uncertainty of solution was analyzed using the Monte Carlo method in the process of SAND-Ⅱ.
文摘The earthquake size distribution is generally considered to obey the Gutenberg Richter (GR) law. We have introduced the concept of the b value spectrum based on the moment method to investigate the deviation of the actual magnitude distribution of earthquakes from this law. This enables us to describe characteristic features of the magnitude frequency distribution of earthquakes. We found also a simple relation between the η value and the b value spectrum. Analysis using this scheme showed that the actual size distributions of earthquakes have large variations from case to case and sometimes deviate considerably from the widely assumed the GR formula.
基金National Natural Science Foundation of China(No.11272082)
文摘The rainflow counting method is a reasonable cyclecounting procedure for fatigue life calculation and simulation testing of structures.It defines cycles as closed stress /strain hysteresis loops.Application of the rainflow counting method requires a data processing of the loading spectrum,which consists of the elimination of non-peak value data points,load time histories adjustment and loop extraction.In the data processing of the loading spectrum,if a stress point is neither the peak nor the valley,it will be identified and eliminated from the loading spectrum.Generally,the loading process is idealized as a single peak-valley straight line.But in actually,there are polylines or nearly straight lines between peaks and valleys which can't be ignored.Therefore,in the process of eliminating such data points,it will produce error in method itself.To reduce the error produced by the traditional method itself,a new method which can well simplify the polylines in data processing of loading spectrum is proposed in this paper.Comparing with the original approximation method,the proposed method has higher precision.
基金National Natural Science Foundation of China Under Granted No.50538020Youth Science Foundation of Harbin City Under Grand No.2005AFXXJ015Youth Science Foundation of Heilongjiang Institute of Science and Technology
文摘This paper presents a new procedure to transform an SSI system into an equivalent SDOF system using twice equivalence. A pushover analysis procedure based on the capacity spectrum method for buildings with SSI effects (PASSI) is then established based on the equivalent SDOF system, and the modified response spectrum and equivalent capacity spectrum are obtained. Furthermore, the approximate formulas to obtain the dynamic stiffness of foundations are suggested. Three steel buildings with different story heights (3, 9 and 20) including SSI effects are analyzed under two far-field and two near-field historical records and an artificial seismic time history using the two PASSI procedures and the nonlinear response history analysis (NLhRHA) method. The results are compared and discussed. Finally, combined with seismic design response spectrum, the nonlinear seismic response of a 9-story building with SSI effects is analyzed using the PASSI procedures, and its seismic performance is evaluated according to the Chinese 'Code for Seismic Design of Buildings. The feasibility of the proposed procedure is verified.