UWB signal digitization depends, to a large extent, on the accuracy of sampling time. A highaccuracy programmable timer is therefore the key to implementing UWB signal data acquisition. A high-accuracy programmable ti...UWB signal digitization depends, to a large extent, on the accuracy of sampling time. A highaccuracy programmable timer is therefore the key to implementing UWB signal data acquisition. A high-accuracy programmable timer based on the principle of ramp generators is described in this paper. The counting range of the timer is up to 16 bits, the timing precision is 8 ps, and the equivalent sampling rate is up to 50G Hz. No other identical product has been reported so far. This timer was successfully used in the data acquisition system for geological radar signals developed by us.展开更多
High-speed high-resolution analog-to-digital (A/D) conversion demanded by ultra wideband (UWB) signal processing is a very challenging problem. This paper proposes a parallel random projection method for UWB signa...High-speed high-resolution analog-to-digital (A/D) conversion demanded by ultra wideband (UWB) signal processing is a very challenging problem. This paper proposes a parallel random projection method for UWB signal acquisition. The proposed method can achieve high sampling rate, high resolution and technical feasibility of hardware implementation. In the proposed method, an analog UWB signal is projected over a set of random sign functions. Then the low-rate high-resolution analog-to-digital convertors (ADCs) are used to sample the projection coefficients. The signal can be reconstructed by simple linear calculation with the sampling matrix, without complying with optimization algorithm and prior knowledge. In other aspects, unlike other approaches that need to utilize an accurate time-shift at extremely high frequency, or design a hybrid filter bank, or generate specific basis functions or work for signals with prior knowledge, the proposed method is a universal sampling approach and easy to apply. The simulation results of signal to noise ratio (SNR) and spurious-free dynamic range (SFDR) validate the efficiency of the proposed method for UWB signal acquisition.展开更多
基金This research is sponsored by National Natural Science Foundation of China,Special Fund of Scientific Instruments:The studyand development of flameproof ground penetrating radar (50127402).
文摘UWB signal digitization depends, to a large extent, on the accuracy of sampling time. A highaccuracy programmable timer is therefore the key to implementing UWB signal data acquisition. A high-accuracy programmable timer based on the principle of ramp generators is described in this paper. The counting range of the timer is up to 16 bits, the timing precision is 8 ps, and the equivalent sampling rate is up to 50G Hz. No other identical product has been reported so far. This timer was successfully used in the data acquisition system for geological radar signals developed by us.
基金supported by the National Natural Science Foundation of China (60736043, 61070138, 61033004)the Specialized Research Fund for the Doctoral Program of High Education (200807010004)
文摘High-speed high-resolution analog-to-digital (A/D) conversion demanded by ultra wideband (UWB) signal processing is a very challenging problem. This paper proposes a parallel random projection method for UWB signal acquisition. The proposed method can achieve high sampling rate, high resolution and technical feasibility of hardware implementation. In the proposed method, an analog UWB signal is projected over a set of random sign functions. Then the low-rate high-resolution analog-to-digital convertors (ADCs) are used to sample the projection coefficients. The signal can be reconstructed by simple linear calculation with the sampling matrix, without complying with optimization algorithm and prior knowledge. In other aspects, unlike other approaches that need to utilize an accurate time-shift at extremely high frequency, or design a hybrid filter bank, or generate specific basis functions or work for signals with prior knowledge, the proposed method is a universal sampling approach and easy to apply. The simulation results of signal to noise ratio (SNR) and spurious-free dynamic range (SFDR) validate the efficiency of the proposed method for UWB signal acquisition.