Pitting corrosion is harmful during bridge construction,which will lead to uneven roughness of steel surfaces and reduce the thickness of steel.Hence,the effect of pitting corrosion on the mechanical properties of col...Pitting corrosion is harmful during bridge construction,which will lead to uneven roughness of steel surfaces and reduce the thickness of steel.Hence,the effect of pitting corrosion on the mechanical properties of cold-formed thin-walled steel stub columns is studied,and the empirical formulas are established through regression fitting to predict the ultimate load of web and flange under pitting corrosion.In detail,the failure modes and load-displacement curves of specimens with different locations,area ratios,and depths are obtained through a large number of non-linear finite element analysis.As for the specimens with pitting corrosion on the web,all the specimens are subject to local buckling failure,and the failure mode will not change with pitting corrosion,but the failure location will change with pitting corrosion location;the size,location,and area ratio of pitting corrosion have little influence on the ultimate load of cold-formed thin-walled steel short columns,but the loss rate of pitting corrosion section area has a greater impact on the ultimate bearing capacity.As for the specimen with flange pitting corrosion,the location and area ratio of pitting corrosion have less influence on the ultimate load of cold-formed thin-walled steel short columns,and the section area loss rate has greater influence on the ultimate bearing capacity;the impact of web pitting corrosion on the ultimate load is greater than that of flange pitting corrosion under the same condition of pitting corrosion section area.The prediction formulas of limit load which are suitable for pitting corrosion of web and flange are established,which can provide a reference for performance evaluation of corroded cold-formed thin-walled steel.展开更多
The prosperous post buckling load capacity of web plates of box girders can be used.In this article,the post buckling behaviour of web plates of box girders under different loading conditions is theoretically analyz...The prosperous post buckling load capacity of web plates of box girders can be used.In this article,the post buckling behaviour of web plates of box girders under different loading conditions is theoretically analyzed and on the basis of domestic and overseas design codes of steel structures,the corresponding simplified analysis methods are put forward for the engineering design or code revision.It is proved that the simplified methods are safe,efficient and practicable through the comparison between several results.展开更多
Based on the functional theory, catastrophe theory, simultaneity principle and the idea of strength reduction method (SRM), the bearing capacity functional anti SRM of pile group foundation were established, and the...Based on the functional theory, catastrophe theory, simultaneity principle and the idea of strength reduction method (SRM), the bearing capacity functional anti SRM of pile group foundation were established, and the criteria of ultimate load and the concept of safety storage coefficient (Css) were advanced. The inclined ultimate loads by the static loading test, load increment method (LIM) and SRM are compared. Theoretically, the ultimate load of piles does not change with the loading levels when it is calculated by SRM. When the one strength reduction parameter is applied in the calculation boundary, there are calculating errors because the bearing capacity action of soils happened in the finite zone. The inclined 10adings are 108, 132 and 144 kN, and SSC are 1.07, 0.94 and 0.79, respectively, so the calculation values of ultimate loads are about 115.56, 124.08 and 113.76 kN, respectively. The error between calculations and observation values is less than 6%. But .the error between calculations of LIM and observations is 20%. Because of the effect of inclined loading, the push-rotation phenomenon of screw pile group appears. Under this testing, the ultimate bearing capacity of piles is mostly determined by the horizontal ultimate bearing capacity, and the effect of the vertical component of inclined load should also be considered.展开更多
Experimental research and numerical analysis were applied to study the ultimate load capacity(ULC) and reinforcement of circular-hollow-section N-joint.Four specimens were tested under static load.The ULC of each spec...Experimental research and numerical analysis were applied to study the ultimate load capacity(ULC) and reinforcement of circular-hollow-section N-joint.Four specimens were tested under static load.The ULC of each specimen was obtained and the detailed failure conditions were discussed.Based on the results, both welding a plate on the chord member and filling concrete in the chord member are effective to reinforce the N-joint, but it is suggested that these two methods should not be applied simultaneously.Mo...展开更多
A set of generalized solutions are proposed for estimating ultimate load capacity of pipeline with arbitrary corrosion shapes subjected to combined internal pressure, axial force and bending moment. Isotropic and anis...A set of generalized solutions are proposed for estimating ultimate load capacity of pipeline with arbitrary corrosion shapes subjected to combined internal pressure, axial force and bending moment. Isotropic and anisotropic material characteristics in longitudinal and circumferential direction of pipeline are also considered in the proposed equations. Simplified numerical method is used to solve the generalized expressions. The comparisons of numerical results based generalized solutions and full-scale experimental results are carried out. The predicted results agree reasonably well with the experiment results. Meanwhile, the effects of corrosion shapes and locations on the ultimate load capacity are studied.展开更多
Fiber reinforced polymer (FRP) composites are increasingly being used for the re-pair and strengthening of deteriorated concrete structural components through adhesive bonding of prefabricated strips/plates and the ...Fiber reinforced polymer (FRP) composites are increasingly being used for the re-pair and strengthening of deteriorated concrete structural components through adhesive bonding of prefabricated strips/plates and the wet lay-up of fabric. Interfacial bond failure modes have attracted the attention of researchers because of the importance. The objective of the present study is to analyse the interface failure mechanism of reinforced concrete continuous beam strength-ened by FRP. An analytical solution has been firstly presented to predict the entire debonding process of the model. The realistic bi-linear bond-slip interfacial law was adopted to study this problem. The crack propagation process of the loaded model was divided into four stages (elastic,elastic-softening,elastic-softening-debonded and softening-debonded stage). Among them,elastic-softening-debonded stage has four sub-stages. The equations are solved by adding suitable stress and displacement boundary conditions. Finally,critical value of bond length is determined to make the failure mechanism in the paper effective by solving the simultaneously linear algebraic equations. The interaction between the upper and lower FRP plates can be neglected if axial stiffness ratio of the concrete-to-plate prism is large enough.展开更多
In this paper, the nonlinear collapse of the BOHAI-8 pile foundation jacket platform has been analyzed. The ultimate load and collapse process of two computational models of the structure are given. One model is of fi...In this paper, the nonlinear collapse of the BOHAI-8 pile foundation jacket platform has been analyzed. The ultimate load and collapse process of two computational models of the structure are given. One model is of fixed support whose length is eight times the pile leg diameter and the other considers the nonlinearity of the soil-pile interaction.展开更多
Based on the assumption of additional three-hinge arching action,an analytical method was proposed to predict the additional load of lateral restraint reinforced concrete (RC) slab under compressive membrane action (C...Based on the assumption of additional three-hinge arching action,an analytical method was proposed to predict the additional load of lateral restraint reinforced concrete (RC) slab under compressive membrane action (CMA),and its ultimate load could be obtained by adding pure bending load. The experiment of twelve one-way RC slabs supported by shear-walls was carried out,and the calculations of this proposed method provide good predictions for the experimental evidences. The influence of some design parameters on bearing capacity was also investigated. It is shown that the effect of vertical load on ending shear-wall on the ultimate load capacity can be generally neglected when the bending restraint is satisfied. The additional load capacity also decreases with the increase of the span-to-height ratio of central slab. When reducing the reinforcement area,the additional load capacity is increased,and this method can be used to save steel or enhance the ultimate load capacity of low steel ratio slab.展开更多
To study the behaviour of reinforced concrete (RC) structures with sections of concrete removed and the reinforcement exposed, 3D nonlinear numerical analysis was performed upon both intact and debonded RC beams by ...To study the behaviour of reinforced concrete (RC) structures with sections of concrete removed and the reinforcement exposed, 3D nonlinear numerical analysis was performed upon both intact and debonded RC beams by using finite element techniques. The deformational characteristics and the ultimate loads were obtained through numerical models, as well as crack and stress distributions. The failure modes can also be deduced from computational results. Compared with intact beams, the normal assumptions of plane section behaviour is not hold true and the patterns of stress and strain are different in debonded RC beams. The numerical results show good consistency with experimental data. This kind of numerical simulation is a supplement to existing codes.展开更多
For low cost houses in Pakistan, Reinforced Baked Clay (RBC) is considered to be a potential construction material as a substitute of Reinforced Cement Concrete (RCC). Deflection and cracks are important parameters fo...For low cost houses in Pakistan, Reinforced Baked Clay (RBC) is considered to be a potential construction material as a substitute of Reinforced Cement Concrete (RCC). Deflection and cracks are important parameters for design of beams in a building. However, for RBC beams it is still unknown that how the deflection and crack width could be controlled by increasing ratio of reinforcement. This study investigates the effect of ratio of reinforcement on deflection and cracking behaviour of baked clay beams. The results show that by increasing area of reinforcement by 50% in baked clay beams: 1) deflection was decreased to 2.5 times, and 2) crack width was reduced to three times.展开更多
Construction of Reinforced Cement Concrete (RCC) houses is unaffordable for low income people living in plains of Pakistan because of high cost of cement and aggregates. In such regions, use of Reinforced Baked Clay (...Construction of Reinforced Cement Concrete (RCC) houses is unaffordable for low income people living in plains of Pakistan because of high cost of cement and aggregates. In such regions, use of Reinforced Baked Clay (RBC) is considered to be a cheaper alternative for RCC. This paper presents structural behaviour of RBC beams. The results of RBC beams were compared with a control RCC beam of same size and reinforcement. Both types of the beams showed similar load deflection behaviour in pre-yield stage. Whereas, in post yield stage, the RBC beams showed comparatively more deflection as compared to the RCC beam. The ultimate load carrying capacity of the RBC beams was almost similar to that of the RCC beam. This study suggests that the RBC beams can be used economically instead of RCC beams without losing strength and safety of a building.展开更多
We propose a new algorithm,named Asymmetric Genetic Algorithm(AGA),for solving optimization problems of steel frames.The AGA consists of a developed penalty function,which helps to find the best generation of the popu...We propose a new algorithm,named Asymmetric Genetic Algorithm(AGA),for solving optimization problems of steel frames.The AGA consists of a developed penalty function,which helps to find the best generation of the population.The objective function is to minimize the weight of the whole steel structure under the constraint of ultimate loads defined for structural steel buildings by the American Institute of Steel Construction(AISC).Design variables are the cross-sectional areas of elements(beams and columns)that are selected from the sets of side-flange shape steel sections provided by the AISC.The finite element method(FEM)is utilized for analyzing the behavior of steel frames.A 15-storey three-bay steel planar frame is optimized by AGA in this study,which was previously optimized by algorithms such as Particle Swarm Optimization(PSO),Particle Swarm Optimizer with Passive Congregation(PSOPC),Particle Swarm Ant Colony Optimization(HPSACO),Imperialist Competitive Algorithm(ICA),and Charged System Search(CSS).The results of AGA such as total weight of the structure and number of analyses are compared with the results of these algorithms.AGA performs better in comparison to these algorithms with respect to total weight and number of analyses.In addition,five numerical examples are optimized by AGA,Genetic Algorithm(GA),and optimization modules of SAP2000,and the results of them are compared.The results show that AGA can decrease the time of analyses,the number of analyses,and the total weight of the structure.AGA decreases the total weight of regular and irregular steel frame about 11.1%and 26.4%in comparing with the optimized results of SAP2000,respectively.展开更多
基金funded by the‘Research Project of the Sucheng to Sihong Section of the Yanluo Expressway-Measurement Technology and Application of Bridge Quality Project Based on UAV Binocular Imaging(No.00-00-JSFW-20230203-029)’,received by H.Z.Wang.
文摘Pitting corrosion is harmful during bridge construction,which will lead to uneven roughness of steel surfaces and reduce the thickness of steel.Hence,the effect of pitting corrosion on the mechanical properties of cold-formed thin-walled steel stub columns is studied,and the empirical formulas are established through regression fitting to predict the ultimate load of web and flange under pitting corrosion.In detail,the failure modes and load-displacement curves of specimens with different locations,area ratios,and depths are obtained through a large number of non-linear finite element analysis.As for the specimens with pitting corrosion on the web,all the specimens are subject to local buckling failure,and the failure mode will not change with pitting corrosion,but the failure location will change with pitting corrosion location;the size,location,and area ratio of pitting corrosion have little influence on the ultimate load of cold-formed thin-walled steel short columns,but the loss rate of pitting corrosion section area has a greater impact on the ultimate bearing capacity.As for the specimen with flange pitting corrosion,the location and area ratio of pitting corrosion have less influence on the ultimate load of cold-formed thin-walled steel short columns,and the section area loss rate has greater influence on the ultimate bearing capacity;the impact of web pitting corrosion on the ultimate load is greater than that of flange pitting corrosion under the same condition of pitting corrosion section area.The prediction formulas of limit load which are suitable for pitting corrosion of web and flange are established,which can provide a reference for performance evaluation of corroded cold-formed thin-walled steel.
基金Supported by Ministry of Metallurgical Industry of China
文摘The prosperous post buckling load capacity of web plates of box girders can be used.In this article,the post buckling behaviour of web plates of box girders under different loading conditions is theoretically analyzed and on the basis of domestic and overseas design codes of steel structures,the corresponding simplified analysis methods are put forward for the engineering design or code revision.It is proved that the simplified methods are safe,efficient and practicable through the comparison between several results.
基金Project(51178457) supported by the National Natural Science Foundation of ChinaProject(cstc2012jjys0001) supported by the Natural Science Foundation of Chongqing,ChinaProject(L2011231) supported by the Liaoning Education Department,China
文摘Based on the functional theory, catastrophe theory, simultaneity principle and the idea of strength reduction method (SRM), the bearing capacity functional anti SRM of pile group foundation were established, and the criteria of ultimate load and the concept of safety storage coefficient (Css) were advanced. The inclined ultimate loads by the static loading test, load increment method (LIM) and SRM are compared. Theoretically, the ultimate load of piles does not change with the loading levels when it is calculated by SRM. When the one strength reduction parameter is applied in the calculation boundary, there are calculating errors because the bearing capacity action of soils happened in the finite zone. The inclined 10adings are 108, 132 and 144 kN, and SSC are 1.07, 0.94 and 0.79, respectively, so the calculation values of ultimate loads are about 115.56, 124.08 and 113.76 kN, respectively. The error between calculations and observation values is less than 6%. But .the error between calculations of LIM and observations is 20%. Because of the effect of inclined loading, the push-rotation phenomenon of screw pile group appears. Under this testing, the ultimate bearing capacity of piles is mostly determined by the horizontal ultimate bearing capacity, and the effect of the vertical component of inclined load should also be considered.
基金Supported by National Natural Science Foundation of China (No.50608054)
文摘Experimental research and numerical analysis were applied to study the ultimate load capacity(ULC) and reinforcement of circular-hollow-section N-joint.Four specimens were tested under static load.The ULC of each specimen was obtained and the detailed failure conditions were discussed.Based on the results, both welding a plate on the chord member and filling concrete in the chord member are effective to reinforce the N-joint, but it is suggested that these two methods should not be applied simultaneously.Mo...
基金financially supported by the National Natural Science Foundation of China(Grant No.51309236)Doctoral Foundation of the Ministry of Education of China(Grant No.20120007120009)+2 种基金the Opening Fund of State Key Laboratory of Ocean Engineering(Shanghai Jiao Tong University,Grant No.1314)the Opening Fund of State Key Laboratory of Hydraulic Engineering Simulation and Safety(Tianjin University,Grant No.HESS-1411)the Science Foundation of China University of Petroleum(Beijing)(Grant No.QD-2010-08)
文摘A set of generalized solutions are proposed for estimating ultimate load capacity of pipeline with arbitrary corrosion shapes subjected to combined internal pressure, axial force and bending moment. Isotropic and anisotropic material characteristics in longitudinal and circumferential direction of pipeline are also considered in the proposed equations. Simplified numerical method is used to solve the generalized expressions. The comparisons of numerical results based generalized solutions and full-scale experimental results are carried out. The predicted results agree reasonably well with the experiment results. Meanwhile, the effects of corrosion shapes and locations on the ultimate load capacity are studied.
基金supported by the Scheme of Science and Technology of Guangdong Province (2005B32801002), China
文摘Fiber reinforced polymer (FRP) composites are increasingly being used for the re-pair and strengthening of deteriorated concrete structural components through adhesive bonding of prefabricated strips/plates and the wet lay-up of fabric. Interfacial bond failure modes have attracted the attention of researchers because of the importance. The objective of the present study is to analyse the interface failure mechanism of reinforced concrete continuous beam strength-ened by FRP. An analytical solution has been firstly presented to predict the entire debonding process of the model. The realistic bi-linear bond-slip interfacial law was adopted to study this problem. The crack propagation process of the loaded model was divided into four stages (elastic,elastic-softening,elastic-softening-debonded and softening-debonded stage). Among them,elastic-softening-debonded stage has four sub-stages. The equations are solved by adding suitable stress and displacement boundary conditions. Finally,critical value of bond length is determined to make the failure mechanism in the paper effective by solving the simultaneously linear algebraic equations. The interaction between the upper and lower FRP plates can be neglected if axial stiffness ratio of the concrete-to-plate prism is large enough.
文摘In this paper, the nonlinear collapse of the BOHAI-8 pile foundation jacket platform has been analyzed. The ultimate load and collapse process of two computational models of the structure are given. One model is of fixed support whose length is eight times the pile leg diameter and the other considers the nonlinearity of the soil-pile interaction.
基金Project(PCSIRT0518) supported by the Program for Changjiang Scholars and Innovative Research Team in University of China
文摘Based on the assumption of additional three-hinge arching action,an analytical method was proposed to predict the additional load of lateral restraint reinforced concrete (RC) slab under compressive membrane action (CMA),and its ultimate load could be obtained by adding pure bending load. The experiment of twelve one-way RC slabs supported by shear-walls was carried out,and the calculations of this proposed method provide good predictions for the experimental evidences. The influence of some design parameters on bearing capacity was also investigated. It is shown that the effect of vertical load on ending shear-wall on the ultimate load capacity can be generally neglected when the bending restraint is satisfied. The additional load capacity also decreases with the increase of the span-to-height ratio of central slab. When reducing the reinforcement area,the additional load capacity is increased,and this method can be used to save steel or enhance the ultimate load capacity of low steel ratio slab.
文摘To study the behaviour of reinforced concrete (RC) structures with sections of concrete removed and the reinforcement exposed, 3D nonlinear numerical analysis was performed upon both intact and debonded RC beams by using finite element techniques. The deformational characteristics and the ultimate loads were obtained through numerical models, as well as crack and stress distributions. The failure modes can also be deduced from computational results. Compared with intact beams, the normal assumptions of plane section behaviour is not hold true and the patterns of stress and strain are different in debonded RC beams. The numerical results show good consistency with experimental data. This kind of numerical simulation is a supplement to existing codes.
文摘For low cost houses in Pakistan, Reinforced Baked Clay (RBC) is considered to be a potential construction material as a substitute of Reinforced Cement Concrete (RCC). Deflection and cracks are important parameters for design of beams in a building. However, for RBC beams it is still unknown that how the deflection and crack width could be controlled by increasing ratio of reinforcement. This study investigates the effect of ratio of reinforcement on deflection and cracking behaviour of baked clay beams. The results show that by increasing area of reinforcement by 50% in baked clay beams: 1) deflection was decreased to 2.5 times, and 2) crack width was reduced to three times.
文摘Construction of Reinforced Cement Concrete (RCC) houses is unaffordable for low income people living in plains of Pakistan because of high cost of cement and aggregates. In such regions, use of Reinforced Baked Clay (RBC) is considered to be a cheaper alternative for RCC. This paper presents structural behaviour of RBC beams. The results of RBC beams were compared with a control RCC beam of same size and reinforcement. Both types of the beams showed similar load deflection behaviour in pre-yield stage. Whereas, in post yield stage, the RBC beams showed comparatively more deflection as compared to the RCC beam. The ultimate load carrying capacity of the RBC beams was almost similar to that of the RCC beam. This study suggests that the RBC beams can be used economically instead of RCC beams without losing strength and safety of a building.
文摘We propose a new algorithm,named Asymmetric Genetic Algorithm(AGA),for solving optimization problems of steel frames.The AGA consists of a developed penalty function,which helps to find the best generation of the population.The objective function is to minimize the weight of the whole steel structure under the constraint of ultimate loads defined for structural steel buildings by the American Institute of Steel Construction(AISC).Design variables are the cross-sectional areas of elements(beams and columns)that are selected from the sets of side-flange shape steel sections provided by the AISC.The finite element method(FEM)is utilized for analyzing the behavior of steel frames.A 15-storey three-bay steel planar frame is optimized by AGA in this study,which was previously optimized by algorithms such as Particle Swarm Optimization(PSO),Particle Swarm Optimizer with Passive Congregation(PSOPC),Particle Swarm Ant Colony Optimization(HPSACO),Imperialist Competitive Algorithm(ICA),and Charged System Search(CSS).The results of AGA such as total weight of the structure and number of analyses are compared with the results of these algorithms.AGA performs better in comparison to these algorithms with respect to total weight and number of analyses.In addition,five numerical examples are optimized by AGA,Genetic Algorithm(GA),and optimization modules of SAP2000,and the results of them are compared.The results show that AGA can decrease the time of analyses,the number of analyses,and the total weight of the structure.AGA decreases the total weight of regular and irregular steel frame about 11.1%and 26.4%in comparing with the optimized results of SAP2000,respectively.