The ultra fine grinding and resin in pulp with pH value of 10 are used to extract gold from pyrite roster cinder. During leaching process, aluminium oxide ball is used as stirring medium, hydrogen peroxide as leaching...The ultra fine grinding and resin in pulp with pH value of 10 are used to extract gold from pyrite roster cinder. During leaching process, aluminium oxide ball is used as stirring medium, hydrogen peroxide as leaching agent and sodium hexametaphosphate as grinding agent. With AM 2б resin as absorber and sulfocarbamide as eluent, gold is recovered from cyanide pulp of pyrite roster cinder by resin in pulp. The effects of contact time, temperature and acidity etc. on the gold absorption are investigated by static methods and dynamic method respectively. The effects of flow rate of solution on dynamic adsorption and elution of gold are studied. The results show that AM 2б resin has good adsorbability in cyanide solution, and gold can be easily eluated from the loaded resin with 0.1mol/L hydrochloric acid and 1mol/L sulfocabamide. The adsorption rate and the elution of gold exceed 98%. When leaching time is 2 h, mass ratio of liquid to solid 4∶1, consumption of sodium cyanide 3 kg/t, concentration of hydrogen peroxide and sodium hexametaphosphate 0.05% respectively, adsorption time 30 min, temperature 10 30 ℃, volume of resin 3 mL, ratio of eluent to resin (10 20)∶1, velocity of eluent 1.5 mL/min, the leaching rate of gold reaches 85%. Compared with traditional leaching technology, it can reduce leaching time, avoid complex filter process, decrease sodium cyanide consumption and increase leaching rate of gold by 35%.展开更多
Ultra fine grinding of the plant tailings of a refractory silver ore was studied using a laboratory type vertical stirred media mill. Preliminary tests confirmed that ultra fine grinding substantially improves the ext...Ultra fine grinding of the plant tailings of a refractory silver ore was studied using a laboratory type vertical stirred media mill. Preliminary tests confirmed that ultra fine grinding substantially improves the extraction of silver from the tailings in cyanide leaching (i.e. 36% Ag extraction rate from the as-received tailings with d80 of 100 μm, c.f. 84% extraction rate after ultra fine grinding of the tailings with ds0 of 1.2 pro). In the ultra fine grinding tests, the effects of ball diameter (2-4.5 mm), stirring speed (200-800 r/m/n) and ball charge ratio (50%-80%) on the fineness of grind (ds0, ~tm) were investigated through a Box-Behnken design. Increasing stirrer speed and ball charge ratio decreased fineness of grind while larger balls resulted in the coarser products. The tests demonstrated that a fineness of grind less than 5 μm can be achieved under suitable conditions. Analysis of stress intensity indicated an optimum range of stress intensity of (0.8-2)× 10^- 3 μm for all power inputs.展开更多
Pelletization is one of useful processes for the agglomeration of iron ore or concentrates. However, manganese ore fines are mainly agglomerated by sintering due to its high combined water which adversely affects the ...Pelletization is one of useful processes for the agglomeration of iron ore or concentrates. However, manganese ore fines are mainly agglomerated by sintering due to its high combined water which adversely affects the roasting performance of pellets. In this work, high pressure roll grinding(HPRG) process and optimization of temperature elevation system were investigated to improve the strength of fired manganese ore pellets. It is shown that the manganese ore possesses good ballability after being pretreated by HPRG twice, and good green balls were produced under the conditions of blending 2.0% bentonite in the feed, balling for 7 min at 16.00% moisture. High quality roasted pellets with the compressive strength of 2711 N per pellet were manufactured through preheating at 1050 °C for 10 min and firing at 1335 °C for 15 min by controlling the cracks formation. The fired manganese pellets keep the strength by the solid interconnection of recrystallized pyrolusite grains and the binding of manganite liquid phase which filled the pores and clearance among minerals. The product pellets contain high Mn grade and low impurities, and can be used to smelt ferromanganese, which provides a possible way to use imported manganese ore fines containing high combined water to produce high value ferromanganese.展开更多
The influence of mechanical activation on the leaching behaviour of scheelite was studied by means of fine grinding in an attritor and subsequently HCl leaching in presence of PO_4^(3-). Results showed that after fine...The influence of mechanical activation on the leaching behaviour of scheelite was studied by means of fine grinding in an attritor and subsequently HCl leaching in presence of PO_4^(3-). Results showed that after fine grinding in the attritor,the reaction rate of scheelite with HCl-Na_3PO_4 solution was remarkably increased,the extraction of W increased from about 8 to 99%.The IR spectra and X-ray diffraction analysis indicated that in addition to an enlargement of surface area the fine grinding action had made also changes of fine struc- ture and reactivity of solid surface,hence the leaching process of scheelite can be carried out under mild leaching conditions.展开更多
The performances of dry grinding fine cement (DFC) in grouting procedure were experimentally studied.The measurement of its fineness and simulated test for injectability showed that this DFC could be used to inject r...The performances of dry grinding fine cement (DFC) in grouting procedure were experimentally studied.The measurement of its fineness and simulated test for injectability showed that this DFC could be used to inject rock mass with micro fissure.In order to improve the grouting quality,the water cement ratio and discarding time of slurry should be controlled precisely.If the water cement ratio is over 2∶1 in slurry that is made from DFC,it is not suitable to grout.Finally,the influence of different mixing times on strength of hydrated cement made from the DFC is explained by microstructure analysis with SEM.展开更多
The effect of grinding on the chemical and physical properties of rice husk ash was studied. Four rice husk ashes with different finenesses, i.e. coarse original rice husk ash (RHA0), RHA1, RHA2, and RHA3 were used ...The effect of grinding on the chemical and physical properties of rice husk ash was studied. Four rice husk ashes with different finenesses, i.e. coarse original rice husk ash (RHA0), RHA1, RHA2, and RHA3 were used for the study. Ordinary Portland cement (OPC) was partially replaced with rice husk ash at 20% by weight of binder. The water to binder ratio (W/B) of the mortar was maintained at 110%±5% with flow table test. Specific gravity, fineness, chemical properties, compressive strength, and porosity test of mortars were determined. The differences in chemical composition of the rice husk ashes with different finenesses from the same batch are small. The use of RHA3 produces the mortars with good strength and low porosity. The strength of the mortar improves with partial replacement of RHA3 in comparison with normal coarse rice husk ash. The use of RHA3 results in a strong and dense mortar, which is due to the better dispersion and filling effect, as well as an increase in the pozzolanic reaction.展开更多
Powdery quartz with average particle size of 10. 4 um which is a natural weathered quartz 'were ground in planetary ball mill. Variations of particle size distribution, specific surface area,crystal structure,faci...Powdery quartz with average particle size of 10. 4 um which is a natural weathered quartz 'were ground in planetary ball mill. Variations of particle size distribution, specific surface area,crystal structure,facial amorphous and thermal character in dry grinding and wet grindding -were examined against grinding time. The results displayed that the fine grinding causes the structural disorder, facial amor-phism and the facial activity enhancing accompained by par-ticle size reduction as grinding proceeds > and the wet grind-ing lowered notably 'Grinding Limit'of the powdery quartz with this planetary ball mill.展开更多
It is known that ore containing cassiterite (SnO2) has been our most important source of tin since antiquity and its successful separation continuously pose problems to mineral processors. The situation is more pron...It is known that ore containing cassiterite (SnO2) has been our most important source of tin since antiquity and its successful separation continuously pose problems to mineral processors. The situation is more pronounced since the depletion of the more easily recoverable alluvial reserves forces us to work with the more complex deposits such as hardrock cassiterite ores. In order to understand more about the challenges in processing complex tin ore deposits, a metasedimentary rock ore sample from a mine in Malaysia was used in this study. Chemical analysis by wet method shows that SnO2 content in the sample was 2.86%, while for mineralogical analysis, the x-ray diffractogram (XRD) of the sample had identified that besides cassiterite, the sample also contained minerals such as quartz (SiO2) and clinochlore. Furthermore, the FESEM (field emission scanning electron microscope) micrograph analysis carried out on a polish section of the sample indicated that the fine cassiterite particles (approximately 80 ~tm) were found to be disseminated in the quartz minerals. Prior to the separation processes, grindability studies were carried-out on crushed samples to liberate the cassiterite from other gangue minerals and at the same time, avoid producing high percentage of fines. For the separation of tin from gangue minerals on the ground samples, two stages of gravity separations by shaking tables were carried out. The first stage was run on ground samples and for the second stage, the middling product from the first stage was re-tabled. Magnetic separation process on Concentrate 1 (stage 1) and Concentrate 2 (stage 2) products from the shaking table increased the grade of SnO2 to 46.85% and 61.90% respectively (as a non-magnetic products). Further concentration process of these non-magnetic products by high tension separator, increased the grade of SnO2 from 85.05% to 98.77%.展开更多
这是一篇矿物加工工程领域的论文。以新疆某次火山岩型铍矿石为研究对象,进行矿物组成、元素组成分析,查明有用矿物的嵌布粒度及赋存状态,并进行系统的浮选实验。在磨矿过程加入活化剂氟化钠,对磨矿细度、浮选药剂制度进行了优化,当磨...这是一篇矿物加工工程领域的论文。以新疆某次火山岩型铍矿石为研究对象,进行矿物组成、元素组成分析,查明有用矿物的嵌布粒度及赋存状态,并进行系统的浮选实验。在磨矿过程加入活化剂氟化钠,对磨矿细度、浮选药剂制度进行了优化,当磨矿细度为-0.074 mm 85%、pH值调整剂碳酸钠、抑制剂硅酸钠、捕收剂油酸钠用量分别为1500、1000、2000 g/t时,可以获得粗选精矿BeO品位6.03%、回收率97.02%的粗选指标。将粗选精矿再磨至-0.045 mm 90%,通过两次精选实验,精矿BeO品位达到8.40%,精矿BeO回收率为78.09%,粗选尾矿经过一次扫选实验,尾矿BeO含量可降至0.003%。“一粗一扫三精、中矿集中返回粗选”的浮选闭路实验,获得了精矿BeO品位8.12%、回收率80.99%的浮选指标,可以实现羟硅铍石的较好富集,满足我国当今铍冶炼工艺对原料BeO含量的要求。展开更多
文摘The ultra fine grinding and resin in pulp with pH value of 10 are used to extract gold from pyrite roster cinder. During leaching process, aluminium oxide ball is used as stirring medium, hydrogen peroxide as leaching agent and sodium hexametaphosphate as grinding agent. With AM 2б resin as absorber and sulfocarbamide as eluent, gold is recovered from cyanide pulp of pyrite roster cinder by resin in pulp. The effects of contact time, temperature and acidity etc. on the gold absorption are investigated by static methods and dynamic method respectively. The effects of flow rate of solution on dynamic adsorption and elution of gold are studied. The results show that AM 2б resin has good adsorbability in cyanide solution, and gold can be easily eluated from the loaded resin with 0.1mol/L hydrochloric acid and 1mol/L sulfocabamide. The adsorption rate and the elution of gold exceed 98%. When leaching time is 2 h, mass ratio of liquid to solid 4∶1, consumption of sodium cyanide 3 kg/t, concentration of hydrogen peroxide and sodium hexametaphosphate 0.05% respectively, adsorption time 30 min, temperature 10 30 ℃, volume of resin 3 mL, ratio of eluent to resin (10 20)∶1, velocity of eluent 1.5 mL/min, the leaching rate of gold reaches 85%. Compared with traditional leaching technology, it can reduce leaching time, avoid complex filter process, decrease sodium cyanide consumption and increase leaching rate of gold by 35%.
文摘Ultra fine grinding of the plant tailings of a refractory silver ore was studied using a laboratory type vertical stirred media mill. Preliminary tests confirmed that ultra fine grinding substantially improves the extraction of silver from the tailings in cyanide leaching (i.e. 36% Ag extraction rate from the as-received tailings with d80 of 100 μm, c.f. 84% extraction rate after ultra fine grinding of the tailings with ds0 of 1.2 pro). In the ultra fine grinding tests, the effects of ball diameter (2-4.5 mm), stirring speed (200-800 r/m/n) and ball charge ratio (50%-80%) on the fineness of grind (ds0, ~tm) were investigated through a Box-Behnken design. Increasing stirrer speed and ball charge ratio decreased fineness of grind while larger balls resulted in the coarser products. The tests demonstrated that a fineness of grind less than 5 μm can be achieved under suitable conditions. Analysis of stress intensity indicated an optimum range of stress intensity of (0.8-2)× 10^- 3 μm for all power inputs.
基金Project(2011GH561685)supported by the China Torch Program
文摘Pelletization is one of useful processes for the agglomeration of iron ore or concentrates. However, manganese ore fines are mainly agglomerated by sintering due to its high combined water which adversely affects the roasting performance of pellets. In this work, high pressure roll grinding(HPRG) process and optimization of temperature elevation system were investigated to improve the strength of fired manganese ore pellets. It is shown that the manganese ore possesses good ballability after being pretreated by HPRG twice, and good green balls were produced under the conditions of blending 2.0% bentonite in the feed, balling for 7 min at 16.00% moisture. High quality roasted pellets with the compressive strength of 2711 N per pellet were manufactured through preheating at 1050 °C for 10 min and firing at 1335 °C for 15 min by controlling the cracks formation. The fired manganese pellets keep the strength by the solid interconnection of recrystallized pyrolusite grains and the binding of manganite liquid phase which filled the pores and clearance among minerals. The product pellets contain high Mn grade and low impurities, and can be used to smelt ferromanganese, which provides a possible way to use imported manganese ore fines containing high combined water to produce high value ferromanganese.
文摘The influence of mechanical activation on the leaching behaviour of scheelite was studied by means of fine grinding in an attritor and subsequently HCl leaching in presence of PO_4^(3-). Results showed that after fine grinding in the attritor,the reaction rate of scheelite with HCl-Na_3PO_4 solution was remarkably increased,the extraction of W increased from about 8 to 99%.The IR spectra and X-ray diffraction analysis indicated that in addition to an enlargement of surface area the fine grinding action had made also changes of fine struc- ture and reactivity of solid surface,hence the leaching process of scheelite can be carried out under mild leaching conditions.
文摘The performances of dry grinding fine cement (DFC) in grouting procedure were experimentally studied.The measurement of its fineness and simulated test for injectability showed that this DFC could be used to inject rock mass with micro fissure.In order to improve the grouting quality,the water cement ratio and discarding time of slurry should be controlled precisely.If the water cement ratio is over 2∶1 in slurry that is made from DFC,it is not suitable to grout.Finally,the influence of different mixing times on strength of hydrated cement made from the DFC is explained by microstructure analysis with SEM.
基金the Commission on Higher Education (MUA) of Thailandthe Sustainable Infrastructure Research and Development Center of Khon Kaen University (SIRDC)Department of Civil Engineering of Rajamangala University of Technology Phra Nakhon (RMUTP)
文摘The effect of grinding on the chemical and physical properties of rice husk ash was studied. Four rice husk ashes with different finenesses, i.e. coarse original rice husk ash (RHA0), RHA1, RHA2, and RHA3 were used for the study. Ordinary Portland cement (OPC) was partially replaced with rice husk ash at 20% by weight of binder. The water to binder ratio (W/B) of the mortar was maintained at 110%±5% with flow table test. Specific gravity, fineness, chemical properties, compressive strength, and porosity test of mortars were determined. The differences in chemical composition of the rice husk ashes with different finenesses from the same batch are small. The use of RHA3 produces the mortars with good strength and low porosity. The strength of the mortar improves with partial replacement of RHA3 in comparison with normal coarse rice husk ash. The use of RHA3 results in a strong and dense mortar, which is due to the better dispersion and filling effect, as well as an increase in the pozzolanic reaction.
文摘Powdery quartz with average particle size of 10. 4 um which is a natural weathered quartz 'were ground in planetary ball mill. Variations of particle size distribution, specific surface area,crystal structure,facial amorphous and thermal character in dry grinding and wet grindding -were examined against grinding time. The results displayed that the fine grinding causes the structural disorder, facial amor-phism and the facial activity enhancing accompained by par-ticle size reduction as grinding proceeds > and the wet grind-ing lowered notably 'Grinding Limit'of the powdery quartz with this planetary ball mill.
文摘It is known that ore containing cassiterite (SnO2) has been our most important source of tin since antiquity and its successful separation continuously pose problems to mineral processors. The situation is more pronounced since the depletion of the more easily recoverable alluvial reserves forces us to work with the more complex deposits such as hardrock cassiterite ores. In order to understand more about the challenges in processing complex tin ore deposits, a metasedimentary rock ore sample from a mine in Malaysia was used in this study. Chemical analysis by wet method shows that SnO2 content in the sample was 2.86%, while for mineralogical analysis, the x-ray diffractogram (XRD) of the sample had identified that besides cassiterite, the sample also contained minerals such as quartz (SiO2) and clinochlore. Furthermore, the FESEM (field emission scanning electron microscope) micrograph analysis carried out on a polish section of the sample indicated that the fine cassiterite particles (approximately 80 ~tm) were found to be disseminated in the quartz minerals. Prior to the separation processes, grindability studies were carried-out on crushed samples to liberate the cassiterite from other gangue minerals and at the same time, avoid producing high percentage of fines. For the separation of tin from gangue minerals on the ground samples, two stages of gravity separations by shaking tables were carried out. The first stage was run on ground samples and for the second stage, the middling product from the first stage was re-tabled. Magnetic separation process on Concentrate 1 (stage 1) and Concentrate 2 (stage 2) products from the shaking table increased the grade of SnO2 to 46.85% and 61.90% respectively (as a non-magnetic products). Further concentration process of these non-magnetic products by high tension separator, increased the grade of SnO2 from 85.05% to 98.77%.
文摘这是一篇矿物加工工程领域的论文。以新疆某次火山岩型铍矿石为研究对象,进行矿物组成、元素组成分析,查明有用矿物的嵌布粒度及赋存状态,并进行系统的浮选实验。在磨矿过程加入活化剂氟化钠,对磨矿细度、浮选药剂制度进行了优化,当磨矿细度为-0.074 mm 85%、pH值调整剂碳酸钠、抑制剂硅酸钠、捕收剂油酸钠用量分别为1500、1000、2000 g/t时,可以获得粗选精矿BeO品位6.03%、回收率97.02%的粗选指标。将粗选精矿再磨至-0.045 mm 90%,通过两次精选实验,精矿BeO品位达到8.40%,精矿BeO回收率为78.09%,粗选尾矿经过一次扫选实验,尾矿BeO含量可降至0.003%。“一粗一扫三精、中矿集中返回粗选”的浮选闭路实验,获得了精矿BeO品位8.12%、回收率80.99%的浮选指标,可以实现羟硅铍石的较好富集,满足我国当今铍冶炼工艺对原料BeO含量的要求。