In this paper,the manufacturing of high-efficiency air filter paper is reported.The air filter paper was produced using ultra-fine fibers and wateroat fibers mercerized by alkali,using an electrospinning apparatus wit...In this paper,the manufacturing of high-efficiency air filter paper is reported.The air filter paper was produced using ultra-fine fibers and wateroat fibers mercerized by alkali,using an electrospinning apparatus with multiple rings.The high efficiency air filter paper has an antibacterial effect after adding a chitosan-copper complex which is harmless to humans.As a result of the measurement,the filtering efficiency of the air filter paper is approximately 99.998%and its antibacterial efficiency is approximately 99.5%.展开更多
A carbon fiber mat is a sheet composed of intercrossing short carbon fibers,which has more stable and lower electrical resistivity compared with dispersed short carbon fiber mixed in cement.Thereby carbon fiber mat ce...A carbon fiber mat is a sheet composed of intercrossing short carbon fibers,which has more stable and lower electrical resistivity compared with dispersed short carbon fiber mixed in cement.Thereby carbon fiber mat cement could exhibit obvious electro-thermal effect.When electrified,the temperature of composite structures made up of cement mortar and carbon fiber mat will rise rapidly.If the temperature field is not uniform,temperature difference will cause structures to deform,which can be used to adjust the deformation of structures.The temperature field and deformation response driven by the electro-thermal effects of a type of carbon fiber mat cement beams are studied.Firstly,the temperature and deformation responses are studied using theories of thermal conduction and elasticity.Secondly,experimental results are given to verify the theoretical solution.These two parts lay the foundation for temperature and deformation adjustment.展开更多
Poly(vinyl alcohol) (PVA) fiber mats containing 20 and 80 wt% H3PW12O40 were prepared by using electrospinning technique. The fiber mats were characterized by IR, XRD spectra and scanning electron microscope (SEM). ...Poly(vinyl alcohol) (PVA) fiber mats containing 20 and 80 wt% H3PW12O40 were prepared by using electrospinning technique. The fiber mats were characterized by IR, XRD spectra and scanning electron microscope (SEM). The diameter of the fiber mats is ca. 400 nm.展开更多
To reduce the environmental pollution and meet the needs for wearable electronic devices, new requirements for electromagnetic interference(EMI) shielding materials include flexibility, biodegradability, and biocompat...To reduce the environmental pollution and meet the needs for wearable electronic devices, new requirements for electromagnetic interference(EMI) shielding materials include flexibility, biodegradability, and biocompatibility. Herein, we reported a polypyrrole-coated zein/epoxy(PPy/ZE) ultrafine fiber mat which was inherently biodegradable and skin-friendly. In addition, it could maintain its ultrafine fibrous structure after coating, which could provide the mat with mechanical compliance, high porosity, and a large specific area for high EMI shielding. With the assistance of the epoxide cross-linking, the breaking stresses of the PPy/ZE fiber mats could achieve 3.3 MPa and 1.4 MPa and the strains were 40.1% and 83.0% in dry and wet states, respectively, which met the needs of various wearable electronic devices. Along with the extension in the PPy treatment duration, more PPy was loaded on the fiber surfaces, which formed more integrated and conductive paths to generate increasing conductivities up to 401.76 S·m^(-1). Moreover, the EMI shielding performance was raised to 26.84 dB. The biobased mats provide a green and efficient choice for EMI shielding materials, which may be a promising strategy to address EMI problems in multiple fields.展开更多
Poly(vinyl alcohol) (PVA) fiber mats containing unsaturated heteropoly salt was prepared for the first time. IR, X-ray diffraction and SEM photographs characterized the beaded fiber mats. The viscoelasticity and the c...Poly(vinyl alcohol) (PVA) fiber mats containing unsaturated heteropoly salt was prepared for the first time. IR, X-ray diffraction and SEM photographs characterized the beaded fiber mats. The viscoelasticity and the conductivity of the solution were the key factors that influence the formation of the beaded fiber mats.展开更多
The easiest and most reliable joining method is the mechanical joint with a bolt and nut or rivet. However, in the case of composite laminates, mechanical joint properties decrease because of lower interlaminar proper...The easiest and most reliable joining method is the mechanical joint with a bolt and nut or rivet. However, in the case of composite laminates, mechanical joint properties decrease because of lower interlaminar properties compared to in-plane properties around hole.?This study investigated needle punching process with the aim of improving the mechanical properties in the thickness direction of fiber-reinforced plastic composite laminates with an open hole. Needle punching process was applied to glass fiber chopped strand matused as the reinforcement for the composite laminates. Open-hole tensile tests and observations of end cross-sections after the tests were performed. The tensile properties and fracture mechanism of the specimens subjected to needle punching process were investigated. In addition, characteristic distance (a parameter for evaluating resistance to fracture in open-hole tensile test specimens) was also calculated to examine the effects of needle punching process conditions on fracture toughness. Tensile strength was improved by more than 15% by needle punching process. However, when a certain needle punching density was exceeded, the mechanical properties worsened. In addition, characteristic distance increased with increasing needle punching density. Thus, these results suggest that there is an optimal needle punching density with respect to strength and characteristic distance.展开更多
文摘In this paper,the manufacturing of high-efficiency air filter paper is reported.The air filter paper was produced using ultra-fine fibers and wateroat fibers mercerized by alkali,using an electrospinning apparatus with multiple rings.The high efficiency air filter paper has an antibacterial effect after adding a chitosan-copper complex which is harmless to humans.As a result of the measurement,the filtering efficiency of the air filter paper is approximately 99.998%and its antibacterial efficiency is approximately 99.5%.
基金Project supported by National Natural Science Foundation of China(No.50238040).
文摘A carbon fiber mat is a sheet composed of intercrossing short carbon fibers,which has more stable and lower electrical resistivity compared with dispersed short carbon fiber mixed in cement.Thereby carbon fiber mat cement could exhibit obvious electro-thermal effect.When electrified,the temperature of composite structures made up of cement mortar and carbon fiber mat will rise rapidly.If the temperature field is not uniform,temperature difference will cause structures to deform,which can be used to adjust the deformation of structures.The temperature field and deformation response driven by the electro-thermal effects of a type of carbon fiber mat cement beams are studied.Firstly,the temperature and deformation responses are studied using theories of thermal conduction and elasticity.Secondly,experimental results are given to verify the theoretical solution.These two parts lay the foundation for temperature and deformation adjustment.
文摘Poly(vinyl alcohol) (PVA) fiber mats containing 20 and 80 wt% H3PW12O40 were prepared by using electrospinning technique. The fiber mats were characterized by IR, XRD spectra and scanning electron microscope (SEM). The diameter of the fiber mats is ca. 400 nm.
基金Fundamental Research Funds for the Central Universities,China(No. 2232022D-13)Fundamental Research Funds of Shanghai Collaborative Innovation Center of High Performance Fibers and Composites (Province-M inistry Joint),China(No. X12812101/015)。
文摘To reduce the environmental pollution and meet the needs for wearable electronic devices, new requirements for electromagnetic interference(EMI) shielding materials include flexibility, biodegradability, and biocompatibility. Herein, we reported a polypyrrole-coated zein/epoxy(PPy/ZE) ultrafine fiber mat which was inherently biodegradable and skin-friendly. In addition, it could maintain its ultrafine fibrous structure after coating, which could provide the mat with mechanical compliance, high porosity, and a large specific area for high EMI shielding. With the assistance of the epoxide cross-linking, the breaking stresses of the PPy/ZE fiber mats could achieve 3.3 MPa and 1.4 MPa and the strains were 40.1% and 83.0% in dry and wet states, respectively, which met the needs of various wearable electronic devices. Along with the extension in the PPy treatment duration, more PPy was loaded on the fiber surfaces, which formed more integrated and conductive paths to generate increasing conductivities up to 401.76 S·m^(-1). Moreover, the EMI shielding performance was raised to 26.84 dB. The biobased mats provide a green and efficient choice for EMI shielding materials, which may be a promising strategy to address EMI problems in multiple fields.
文摘Poly(vinyl alcohol) (PVA) fiber mats containing unsaturated heteropoly salt was prepared for the first time. IR, X-ray diffraction and SEM photographs characterized the beaded fiber mats. The viscoelasticity and the conductivity of the solution were the key factors that influence the formation of the beaded fiber mats.
文摘The easiest and most reliable joining method is the mechanical joint with a bolt and nut or rivet. However, in the case of composite laminates, mechanical joint properties decrease because of lower interlaminar properties compared to in-plane properties around hole.?This study investigated needle punching process with the aim of improving the mechanical properties in the thickness direction of fiber-reinforced plastic composite laminates with an open hole. Needle punching process was applied to glass fiber chopped strand matused as the reinforcement for the composite laminates. Open-hole tensile tests and observations of end cross-sections after the tests were performed. The tensile properties and fracture mechanism of the specimens subjected to needle punching process were investigated. In addition, characteristic distance (a parameter for evaluating resistance to fracture in open-hole tensile test specimens) was also calculated to examine the effects of needle punching process conditions on fracture toughness. Tensile strength was improved by more than 15% by needle punching process. However, when a certain needle punching density was exceeded, the mechanical properties worsened. In addition, characteristic distance increased with increasing needle punching density. Thus, these results suggest that there is an optimal needle punching density with respect to strength and characteristic distance.