The ultra-fine grain (UFG) steel is welded by using resistance spot welding technique with or without requirement of upsetting force. Metallographic inspection shows that the grain size of weld nugget is larger than...The ultra-fine grain (UFG) steel is welded by using resistance spot welding technique with or without requirement of upsetting force. Metallographic inspection shows that the grain size of weld nugget is larger than that of the base metal and the microstructure is altered significantly. In addition, contracting defects such as air holes can be found in the nugget center. The experiments show that the defects can be effectively avoided by the technique of adding upsetting force during the nugget cooling and crystallizing processes. In tensile shear tests, the welding joint starts to crack from the inner edge of the corona bond. The results of micro-hardness tests show that the newly born martensite structure dramatically improves the hardness of the joint. Under the interactions between residual stresses and regenerated fine grains, the micro-hardness of the heat-affected zone ( HAZ ) is lower than that of the nugget, but evidently higher than that of the base metal.展开更多
The properties and structures of thermotropical liquid crystalline copolyesters based on p-hydroxybenzoic acid (PHBA), terephthalic acid (TPR) and bisphenol A (BPA) were studied by DSC, WAXD, hot stage polarized micro...The properties and structures of thermotropical liquid crystalline copolyesters based on p-hydroxybenzoic acid (PHBA), terephthalic acid (TPR) and bisphenol A (BPA) were studied by DSC, WAXD, hot stage polarized microscopy and NMR. It was found that most of the copolyesters were soluble in many common organic solvents. The copolyesters had low T-m/T-f values and a broad range of liquid crystal phase, making the polymers readily melt-processable. The effects of annealing at different temperatures on the copolyester containing 33% PHBA were also discussed. It was noted that annealing at ca. 200 degrees C (below Tc - n) could lead to the increasing of the crystallinity of the copolyester while the microstructure and sequence structure had not changed. Annealing at ca. 280 degrees C (near Tc - n) could bring a change of crystal and sequence structure and simultaneously made the microdomains be ordered more perfectly.展开更多
The formulation of nanocrystallinc NiTi shape memory alloys has potential effects in mechanical stimulation and medical im- plantology. The present work elucidates the effect of milling time on the product's structur...The formulation of nanocrystallinc NiTi shape memory alloys has potential effects in mechanical stimulation and medical im- plantology. The present work elucidates the effect of milling time on the product's structural characteristics, chemical composition, and mi- crohardness for NiTi synthesized by mechanical alloying for different milling durations. Increasing the milling duration led to the formation of a nanocrystalline NiTi intermetallic at a higher level. The formation of nanocrystalline materials was directed through cold fusion, fractur- ing, and the development of a steady state, which were influenced by the accumulation of strain energy. In the morphological study, uninter- rupted cold diffusion and fracturing were visualized using transmission electron microscopy. Particle size analysis revealed that the mean particle size was reduced to -93 μm after 20 h of milling. The mechanical strength was enhanced by the formation of a nanocrystalline in- termetallic phase at longer milling time, which was confirmed by the results of Vickers hardness analyses.展开更多
Poly(d,l-lactide-co-p-dioxanone) (P(LA-co-PDO)) copolymers with different chain microstructures were synthesized by onestep or two-step bulk ring-opening polymerizations of d,l-lactide (LA) and p-dioxanone (...Poly(d,l-lactide-co-p-dioxanone) (P(LA-co-PDO)) copolymers with different chain microstructures were synthesized by onestep or two-step bulk ring-opening polymerizations of d,l-lactide (LA) and p-dioxanone (PDO) monomers using stannous octoate [Sn(Oct)2]/n-dodecanol as the initiating system. The average sequence lengths of the lactidyl (LLA) and dioxanyl (LpDo) units were calculated from the ^1H NMR spectra. It was found that both LLA and Lpoo values from the two-step syntheses were significantly longer than those from the corresponding one-step syntheses, indicating more blocky structure achieved for the twostep copolymers. Corresponding to this difference in microstructure, the two-step copolymers were semi-crystalline, while the one-step copolymers were completely amorphous. In conclusion, the crystallinity of P(LA-co-PDO) copolymers could be adjusted conveniently to meet specific applications by changing the microstructure of the copolymers via different polymerization routes.展开更多
Experiments were conducted to evaluate the grain refinement and thermal stability of ultra-fine grained Al-4Mgalloy introduced by equal-channel angular pressing (ECAP) at 473 K. The results show that the intensities o...Experiments were conducted to evaluate the grain refinement and thermal stability of ultra-fine grained Al-4Mgalloy introduced by equal-channel angular pressing (ECAP) at 473 K. The results show that the intensities of X-ray(111/222) and (200/400) peaks for the alloy processed by ECAP decrease significantly and the peak widths of halfheight become broadening compared with the corresponding value in the annealed alloy. The microstructure of 2passes ECAPed alloy consists of both elongated and equiaxed subgrains. The residual strain in the alloy increaseswith increasing passes numbers, that appears as increasing dislocation density and lattice constant of matrix. Anequiaxed ultra-fine grained structure of~0.2μm is obtained in the present alloy after 8 passes. The ultra-fine grainsare stable below 523 K, because the alloy retains extremely fine grain size of~1μm after static annealing at 523 Kfor 1 h.展开更多
This paper deals with the effects of codoped VC/Cr3C2 and sintering temperature on the magnetic and mechanical properties of ultra-fine grained WC-12%Co alloys. Results show that the synergistic action of doped VC/Cr3...This paper deals with the effects of codoped VC/Cr3C2 and sintering temperature on the magnetic and mechanical properties of ultra-fine grained WC-12%Co alloys. Results show that the synergistic action of doped VC/Cr3C2 in optimal proportion enhances both the hardness and transverse rupture strength (TRS) of the alloys, with more homogeneous microstructtLre. When the alloy is sintered at 1430℃ and with 0.5% Cr3C2/0.2% VC, the TRS reaches 3786 MPa, the hardness is 91.7 HRA and the grain size smaller than 0.6 μm. The numerical analyses on grain growth during the sintering process show that both VC precipitating on the WC grain boundary and Cr3C2 dissolving in the Co phase decrease the solid/liquid interfacial energy γ, the process of dissolution and reprecipitation is greatly retarded and the coarsening of WC grains is inhibited.展开更多
Gd-Co alloy films were synthesized by potentiostatic electrolysis on Cu substrates in urea-acetamide-NaBr-KBr melt at 353 K. The electroreduction of Co^2+ and Gd^3+ was investigated by cyclic voltammetry. The reduct...Gd-Co alloy films were synthesized by potentiostatic electrolysis on Cu substrates in urea-acetamide-NaBr-KBr melt at 353 K. The electroreduction of Co^2+ and Gd^3+ was investigated by cyclic voltammetry. The reduction of Co^2+ is an irreversible process. Gd^3+ cannot be reduced alone, but it can be inductively co-deposited with Co^2+. Both the Gd content and microstructure of the prepared Gd-Co alloy films can be controlled by the deposited potential. The content of Gd was analyzed using an inductively coupled plasma emission spectrometer (ICPES), and the microstructure was observed by scanning electron micrograph (SEM). The films were crystallized by heat-treatment at 823 K for 30 s in Ar atmosphere, and then were investigated by XRD. The hysteresis loops of the Gd-Co alloy films were measured by a vibrating sample magnetometer (VSM). The experimental results reveal that the deposited Gd-Co alloy films are amorphous, while the annealing causes the samples to change from amorphous to polycrystalline, thus enhancing their magnetocrystalline anisotropy and coercivity. Moreover, the magnetic properties of the Gd-Co alloy films depend strongly on the Gd content.展开更多
In this study, three kinds of modified ultra-fine ceramic powders marked A, B and C, which were prepared by each of three different modifiers mixing with a commercial SiC, were added to HT250 cast iron, respectively, ...In this study, three kinds of modified ultra-fine ceramic powders marked A, B and C, which were prepared by each of three different modifiers mixing with a commercial SiC, were added to HT250 cast iron, respectively, and the effects of the modified ultra-fine ceramic powders on microstructure, mechanical properties and wear resistance were studied. Metallographic examination, tensile test, scanning electron microscopy, and three-dimensional surface topography were applied to analyze and compare the samples containing modified powder with the original samples. The results showed that the most obvious modification effect among the powders was seen in the sample containing powder A, with the graphite and eutectic cells being refined, the tensile strength being increased by 36.9%, and the wear resistance being improved by 45.5% and 47.2% under loads of 150 N and 300 N, respectively. The improvements of mechanical properties and wear resistance in the HT250 cast iron with the modified ultra-fine ceramic powders were attributed to the synergistic effect of the grain refinement with the powder acting as a hard particle phase and the lubrication by the graphite.展开更多
An as-cast magnesium alloy with high Al content Mg15Al was subjected to equal-channel angular pressing (ECAP) through a die with an angle of φ= 90? at 553 K following route Bc. It is found that the network β-Mg17...An as-cast magnesium alloy with high Al content Mg15Al was subjected to equal-channel angular pressing (ECAP) through a die with an angle of φ= 90? at 553 K following route Bc. It is found that the network β-Mg17Al12 phases in the as-cast Mg15Al alloy are broken into small blocks and dispersed uniformly with increasing numbers of pressing passes. Moreover, many nano-sized Mg17Al12 particles precipitate in the ultra-fine α-Mg matrix. The grains are obviously refined. However, the grain structure is inhomogeneous in different areas of the alloy. The average size of the primary phase α-Mg is reduced to about 1 μm while grains of around 0.1-0.2 μm are obtained in some two-phase areas. With additional ECAP passes (up to 8), coarsening of the grains occurs by dynamic recovery. Room temperature tensile tests show that the mechanical properties of Mg15Al alloys are markedly improved after 4 ECAP passes. The ultimate tensile strength and elongation to failure increase from 150 MPa to 269.3 MPa and from 0.05% to 7.4%, respectively. Compared with that after 4 passes, the elongation to failure of the alloy increases but the strength of the alloy slightly decreases after 8 ECAP passes. Fracture morphology of the ECAP-processed alloy exhibits dimple-like fracture characteristics while the as-cast alloy shows quasi-cleavage fractures.展开更多
Constant-pressure molecular dynamics simulation and the pair analysis technique have been performed to study the microstructural evolution of aluminium during rapid solidification.The microstructure characteristics of...Constant-pressure molecular dynamics simulation and the pair analysis technique have been performed to study the microstructural evolution of aluminium during rapid solidification.The microstructure characteristics of icosahedral ordering increase with decrease of the cooling rate,whereas the microstructure unit characteristics of hep crystalline structure decrease.There are two kinds of microstructure units which are similar to those in the fee crystal containing interstitialcies.These two kinds of microscopic units are nearly independent of the cooling rate.The microscopic structural unit characteristics of fee crystalline structure do not depend on the cooling rate either.These results may help us understand the microstructure of glass and its stability.展开更多
The nanocrystalline Fe64Ni36 thin films were prepared by molecular-beam- vapor deposition under different magnetic flux densities. The microstructure and magnetic properties of thin films were examined by AFM, TEM, HR...The nanocrystalline Fe64Ni36 thin films were prepared by molecular-beam- vapor deposition under different magnetic flux densities. The microstructure and magnetic properties of thin films were examined by AFM, TEM, HRTEM and VSM. The results show that with the increase of magnetic flux densities, the changing trend of the average particle size is the same as the coercive force except 6 T. Under 6 T condition, the thin film became the mixture of bcc and fcc phases, which leads to slight increase of the coercive force. In addition, the HRTEM result shows the short-range ordered clusters (embryos) or nucleation rate of thin films increase with increasing magnetic flux densities.展开更多
Ultra-fine-grained commercial purity aluminum was produced by severe cold rolling, annealing and then strain- ing at ultra-high rate by a single pass laser shock. Resulted microstructure was investigated by transmissi...Ultra-fine-grained commercial purity aluminum was produced by severe cold rolling, annealing and then strain- ing at ultra-high rate by a single pass laser shock. Resulted microstructure was investigated by transmission electron microscopy. Microhardness of annealed 0.6μm ultra-fine grained aluminum increased by 67% from 24 to 40 HV. Many 0.3 μm sub-grains appeared at the shock wave center after a single pass laser shock, while high density dislocation networks were observed in some grains at the shock wave edges. Accordingly, microhardness at the impact center increased by 37.5% from 40 to 55 HV. From the impact center to the edge, microhardness decreased by 22% from 55 to 45 HV.展开更多
In this work,poly(3-hexylthiophene)(P3HT)ultrathin films(P3HT-T)were prepared by spin-coating a dilute P3HT solution(in a toluene:o-dichlorobenzene(Tol:ODCB)blend with a volume ratio of 80:20)with ultrasonication and ...In this work,poly(3-hexylthiophene)(P3HT)ultrathin films(P3HT-T)were prepared by spin-coating a dilute P3HT solution(in a toluene:o-dichlorobenzene(Tol:ODCB)blend with a volume ratio of 80:20)with ultrasonication and the addition of the nucleating agent bicycle[2.2.1]heptane-2,3-dicarboxylic acid disodium salt(HPN-68L)on glass,Si wafers and indium tin oxide(ITO)substrates.The electrical and mechanical properties of the P3HT-T ultrathin films were investigated,and it was found that the conductivity and crack onset strain(COS)were simultaneously improved in comparison with those of the corresponding pristine P3HT film(P3HT-0,without ultrasonication and nucleating agent)on the same substrate,regardless of what substrate was used.Moreover,the conductivity of P3HT-T ultrathin films on different substrates was similar(varying from 3.7 S·cm^(-1)to 4.4 S·cm^(-1)),yet the COS increased from 97%to 138%by varying the substrate from a Si wafer to ITO.Combining grazing-incidence wide-angle X-ray diffraction(GIXRD),UV-visible(UV-Vis)spectroscopy and atomic force microscopy(AFM),we found that the solid order and crystallinity of the P3HT-T ultrathin film on the Si wafer are highest,followed by those on glass,and much lower on ITO.Finally,the surface energy and roughness of three substrates were investigated,and it was found that the polar component of the surface energyγp plays a critical role in determining the crystalline microstructures of P3HT ultrathin films on different substrates.Our work indicates that the P3HT ultrathin film can obviously improve the stretchability and simultaneously retain similar electrical performance when a suitable substrate is chosen.These findings offer a new direction for research on stretchable CP ultrathin films to facilitate future practical applications.展开更多
文摘The ultra-fine grain (UFG) steel is welded by using resistance spot welding technique with or without requirement of upsetting force. Metallographic inspection shows that the grain size of weld nugget is larger than that of the base metal and the microstructure is altered significantly. In addition, contracting defects such as air holes can be found in the nugget center. The experiments show that the defects can be effectively avoided by the technique of adding upsetting force during the nugget cooling and crystallizing processes. In tensile shear tests, the welding joint starts to crack from the inner edge of the corona bond. The results of micro-hardness tests show that the newly born martensite structure dramatically improves the hardness of the joint. Under the interactions between residual stresses and regenerated fine grains, the micro-hardness of the heat-affected zone ( HAZ ) is lower than that of the nugget, but evidently higher than that of the base metal.
文摘The properties and structures of thermotropical liquid crystalline copolyesters based on p-hydroxybenzoic acid (PHBA), terephthalic acid (TPR) and bisphenol A (BPA) were studied by DSC, WAXD, hot stage polarized microscopy and NMR. It was found that most of the copolyesters were soluble in many common organic solvents. The copolyesters had low T-m/T-f values and a broad range of liquid crystal phase, making the polymers readily melt-processable. The effects of annealing at different temperatures on the copolyester containing 33% PHBA were also discussed. It was noted that annealing at ca. 200 degrees C (below Tc - n) could lead to the increasing of the crystallinity of the copolyester while the microstructure and sequence structure had not changed. Annealing at ca. 280 degrees C (near Tc - n) could bring a change of crystal and sequence structure and simultaneously made the microdomains be ordered more perfectly.
文摘The formulation of nanocrystallinc NiTi shape memory alloys has potential effects in mechanical stimulation and medical im- plantology. The present work elucidates the effect of milling time on the product's structural characteristics, chemical composition, and mi- crohardness for NiTi synthesized by mechanical alloying for different milling durations. Increasing the milling duration led to the formation of a nanocrystalline NiTi intermetallic at a higher level. The formation of nanocrystalline materials was directed through cold fusion, fractur- ing, and the development of a steady state, which were influenced by the accumulation of strain energy. In the morphological study, uninter- rupted cold diffusion and fracturing were visualized using transmission electron microscopy. Particle size analysis revealed that the mean particle size was reduced to -93 μm after 20 h of milling. The mechanical strength was enhanced by the formation of a nanocrystalline in- termetallic phase at longer milling time, which was confirmed by the results of Vickers hardness analyses.
基金supported by the National Natural Sciences Fund of China(No.50603025)the Opening Project of State Key Laboratory of Polymer Materials Engineering(Sichuan University).
文摘Poly(d,l-lactide-co-p-dioxanone) (P(LA-co-PDO)) copolymers with different chain microstructures were synthesized by onestep or two-step bulk ring-opening polymerizations of d,l-lactide (LA) and p-dioxanone (PDO) monomers using stannous octoate [Sn(Oct)2]/n-dodecanol as the initiating system. The average sequence lengths of the lactidyl (LLA) and dioxanyl (LpDo) units were calculated from the ^1H NMR spectra. It was found that both LLA and Lpoo values from the two-step syntheses were significantly longer than those from the corresponding one-step syntheses, indicating more blocky structure achieved for the twostep copolymers. Corresponding to this difference in microstructure, the two-step copolymers were semi-crystalline, while the one-step copolymers were completely amorphous. In conclusion, the crystallinity of P(LA-co-PDO) copolymers could be adjusted conveniently to meet specific applications by changing the microstructure of the copolymers via different polymerization routes.
文摘Experiments were conducted to evaluate the grain refinement and thermal stability of ultra-fine grained Al-4Mgalloy introduced by equal-channel angular pressing (ECAP) at 473 K. The results show that the intensities of X-ray(111/222) and (200/400) peaks for the alloy processed by ECAP decrease significantly and the peak widths of halfheight become broadening compared with the corresponding value in the annealed alloy. The microstructure of 2passes ECAPed alloy consists of both elongated and equiaxed subgrains. The residual strain in the alloy increaseswith increasing passes numbers, that appears as increasing dislocation density and lattice constant of matrix. Anequiaxed ultra-fine grained structure of~0.2μm is obtained in the present alloy after 8 passes. The ultra-fine grainsare stable below 523 K, because the alloy retains extremely fine grain size of~1μm after static annealing at 523 Kfor 1 h.
基金the National Natural Science Foundation of China (No. 50372043).
文摘This paper deals with the effects of codoped VC/Cr3C2 and sintering temperature on the magnetic and mechanical properties of ultra-fine grained WC-12%Co alloys. Results show that the synergistic action of doped VC/Cr3C2 in optimal proportion enhances both the hardness and transverse rupture strength (TRS) of the alloys, with more homogeneous microstructtLre. When the alloy is sintered at 1430℃ and with 0.5% Cr3C2/0.2% VC, the TRS reaches 3786 MPa, the hardness is 91.7 HRA and the grain size smaller than 0.6 μm. The numerical analyses on grain growth during the sintering process show that both VC precipitating on the WC grain boundary and Cr3C2 dissolving in the Co phase decrease the solid/liquid interfacial energy γ, the process of dissolution and reprecipitation is greatly retarded and the coarsening of WC grains is inhibited.
基金financially supported by the Science Foundation of the Educational Department of Fujian Prov-ince (No. 2008F5021)the Natural Science Foundation of Fujian Province (No. A0510013)the National Natural Science Foundation of China (No. 60676055)
文摘Gd-Co alloy films were synthesized by potentiostatic electrolysis on Cu substrates in urea-acetamide-NaBr-KBr melt at 353 K. The electroreduction of Co^2+ and Gd^3+ was investigated by cyclic voltammetry. The reduction of Co^2+ is an irreversible process. Gd^3+ cannot be reduced alone, but it can be inductively co-deposited with Co^2+. Both the Gd content and microstructure of the prepared Gd-Co alloy films can be controlled by the deposited potential. The content of Gd was analyzed using an inductively coupled plasma emission spectrometer (ICPES), and the microstructure was observed by scanning electron micrograph (SEM). The films were crystallized by heat-treatment at 823 K for 30 s in Ar atmosphere, and then were investigated by XRD. The hysteresis loops of the Gd-Co alloy films were measured by a vibrating sample magnetometer (VSM). The experimental results reveal that the deposited Gd-Co alloy films are amorphous, while the annealing causes the samples to change from amorphous to polycrystalline, thus enhancing their magnetocrystalline anisotropy and coercivity. Moreover, the magnetic properties of the Gd-Co alloy films depend strongly on the Gd content.
基金financially supported by the National Natural Science Foundation of China(grant no.51204028)
文摘In this study, three kinds of modified ultra-fine ceramic powders marked A, B and C, which were prepared by each of three different modifiers mixing with a commercial SiC, were added to HT250 cast iron, respectively, and the effects of the modified ultra-fine ceramic powders on microstructure, mechanical properties and wear resistance were studied. Metallographic examination, tensile test, scanning electron microscopy, and three-dimensional surface topography were applied to analyze and compare the samples containing modified powder with the original samples. The results showed that the most obvious modification effect among the powders was seen in the sample containing powder A, with the graphite and eutectic cells being refined, the tensile strength being increased by 36.9%, and the wear resistance being improved by 45.5% and 47.2% under loads of 150 N and 300 N, respectively. The improvements of mechanical properties and wear resistance in the HT250 cast iron with the modified ultra-fine ceramic powders were attributed to the synergistic effect of the grain refinement with the powder acting as a hard particle phase and the lubrication by the graphite.
基金Funded by the Taiyuan Special Fund for Sci-Tech Star (No. 09121002)the Youth Science Foundation of Shanxi Province (No.2008021033)Shanxi Research Fund for Returned Scholars (No.2007-25)
文摘An as-cast magnesium alloy with high Al content Mg15Al was subjected to equal-channel angular pressing (ECAP) through a die with an angle of φ= 90? at 553 K following route Bc. It is found that the network β-Mg17Al12 phases in the as-cast Mg15Al alloy are broken into small blocks and dispersed uniformly with increasing numbers of pressing passes. Moreover, many nano-sized Mg17Al12 particles precipitate in the ultra-fine α-Mg matrix. The grains are obviously refined. However, the grain structure is inhomogeneous in different areas of the alloy. The average size of the primary phase α-Mg is reduced to about 1 μm while grains of around 0.1-0.2 μm are obtained in some two-phase areas. With additional ECAP passes (up to 8), coarsening of the grains occurs by dynamic recovery. Room temperature tensile tests show that the mechanical properties of Mg15Al alloys are markedly improved after 4 ECAP passes. The ultimate tensile strength and elongation to failure increase from 150 MPa to 269.3 MPa and from 0.05% to 7.4%, respectively. Compared with that after 4 passes, the elongation to failure of the alloy increases but the strength of the alloy slightly decreases after 8 ECAP passes. Fracture morphology of the ECAP-processed alloy exhibits dimple-like fracture characteristics while the as-cast alloy shows quasi-cleavage fractures.
基金Supported by the National Natural Science Foundation of China under Grant No.19874067the Foundation of the Chinese Academy of Sciences(Grant No.KJ952-J1-412).
文摘Constant-pressure molecular dynamics simulation and the pair analysis technique have been performed to study the microstructural evolution of aluminium during rapid solidification.The microstructure characteristics of icosahedral ordering increase with decrease of the cooling rate,whereas the microstructure unit characteristics of hep crystalline structure decrease.There are two kinds of microstructure units which are similar to those in the fee crystal containing interstitialcies.These two kinds of microscopic units are nearly independent of the cooling rate.The microscopic structural unit characteristics of fee crystalline structure do not depend on the cooling rate either.These results may help us understand the microstructure of glass and its stability.
文摘The nanocrystalline Fe64Ni36 thin films were prepared by molecular-beam- vapor deposition under different magnetic flux densities. The microstructure and magnetic properties of thin films were examined by AFM, TEM, HRTEM and VSM. The results show that with the increase of magnetic flux densities, the changing trend of the average particle size is the same as the coercive force except 6 T. Under 6 T condition, the thin film became the mixture of bcc and fcc phases, which leads to slight increase of the coercive force. In addition, the HRTEM result shows the short-range ordered clusters (embryos) or nucleation rate of thin films increase with increasing magnetic flux densities.
基金support from the National Natural Science Foundation of China (No. 50801021)
文摘Ultra-fine-grained commercial purity aluminum was produced by severe cold rolling, annealing and then strain- ing at ultra-high rate by a single pass laser shock. Resulted microstructure was investigated by transmission electron microscopy. Microhardness of annealed 0.6μm ultra-fine grained aluminum increased by 67% from 24 to 40 HV. Many 0.3 μm sub-grains appeared at the shock wave center after a single pass laser shock, while high density dislocation networks were observed in some grains at the shock wave edges. Accordingly, microhardness at the impact center increased by 37.5% from 40 to 55 HV. From the impact center to the edge, microhardness decreased by 22% from 55 to 45 HV.
基金supported by the National Natural Science Foundation of China(No.21975029)。
文摘In this work,poly(3-hexylthiophene)(P3HT)ultrathin films(P3HT-T)were prepared by spin-coating a dilute P3HT solution(in a toluene:o-dichlorobenzene(Tol:ODCB)blend with a volume ratio of 80:20)with ultrasonication and the addition of the nucleating agent bicycle[2.2.1]heptane-2,3-dicarboxylic acid disodium salt(HPN-68L)on glass,Si wafers and indium tin oxide(ITO)substrates.The electrical and mechanical properties of the P3HT-T ultrathin films were investigated,and it was found that the conductivity and crack onset strain(COS)were simultaneously improved in comparison with those of the corresponding pristine P3HT film(P3HT-0,without ultrasonication and nucleating agent)on the same substrate,regardless of what substrate was used.Moreover,the conductivity of P3HT-T ultrathin films on different substrates was similar(varying from 3.7 S·cm^(-1)to 4.4 S·cm^(-1)),yet the COS increased from 97%to 138%by varying the substrate from a Si wafer to ITO.Combining grazing-incidence wide-angle X-ray diffraction(GIXRD),UV-visible(UV-Vis)spectroscopy and atomic force microscopy(AFM),we found that the solid order and crystallinity of the P3HT-T ultrathin film on the Si wafer are highest,followed by those on glass,and much lower on ITO.Finally,the surface energy and roughness of three substrates were investigated,and it was found that the polar component of the surface energyγp plays a critical role in determining the crystalline microstructures of P3HT ultrathin films on different substrates.Our work indicates that the P3HT ultrathin film can obviously improve the stretchability and simultaneously retain similar electrical performance when a suitable substrate is chosen.These findings offer a new direction for research on stretchable CP ultrathin films to facilitate future practical applications.