Pure tungsten, oxide dispersion strengthened tungsten and carbide dispersion strengthened tungsten were fabricated by high-energy ball milling and spark plasma sintering process. In order to evaluate the properties of...Pure tungsten, oxide dispersion strengthened tungsten and carbide dispersion strengthened tungsten were fabricated by high-energy ball milling and spark plasma sintering process. In order to evaluate the properties of the tungsten alloys under transient high heat flues, four tungsten samples with different grain sizes were tested by high-intensity pulsed ion beam with a heat flux as high as 160 MW/(m^2·s^-1/2). Compared with the commercial tungsten, the surface modification of the oxide dispersion strengthened tungsten by high-intensity pulsed ion beam is completely different. The oxide dispersion strengthened tungsten shows inferior thermal shock response due to the low melting point second phase of Ti and Y2O3, which results in the surface melting, boiling bubbles and cracking. While the carbide dispersion strengthened tungsten shows better thermal shock response than the commercial tungsten.展开更多
Tests of the candidate plasma facing materials(PFMs) used in experimental fusion devices are essential due to the direct influence of in-situ plasma loading.A type of ultrafine grained(UFG) tungsten sintered by re...Tests of the candidate plasma facing materials(PFMs) used in experimental fusion devices are essential due to the direct influence of in-situ plasma loading.A type of ultrafine grained(UFG) tungsten sintered by resistance sintering under ultra-high pressure(RSUHP) method has been exposed in the edge plasma of the HT-7 tokamak to investigate its performance under plasma loading.Under cychc edge plasma loading,the UFG tungsten develops both macro and micro cracks.The macro cracks are attributed to the low temperature brittleness of the tungsten material itself,while the micro cracks are generated from local intense power flux deposition.展开更多
Cu47Ti33Zr11Ni6Sn2Si1-based bulk metallic glass matrix composites reinforced with tungsten wires were fabricated by infiltration process at different temperatures (850, 900, 950 and 1000 °C) and time (10, 20 a...Cu47Ti33Zr11Ni6Sn2Si1-based bulk metallic glass matrix composites reinforced with tungsten wires were fabricated by infiltration process at different temperatures (850, 900, 950 and 1000 °C) and time (10, 20 and 30 min) in a quartz or a steel tube. The mechanical tests were carried out by scanning electron microscopy (SEM) and X-ray diffraction (XRD). The results show that the maximum strength and total strain of the composite are 1778 MPa and 2.8% fabricated in steel tube at 900 °C for 10 min, and 1582 MPa and 3.6% fabricated in quartz tube at 850 °C for 10 min, respectively.展开更多
We investigated the radiation characteristics and implosion dynamics of low-wire-number cylindrical tungsten wire array Z-pinches on the YANG accelerator with a peak current 0.8-1.1 MA and a rising time ~ 90 ns.The a...We investigated the radiation characteristics and implosion dynamics of low-wire-number cylindrical tungsten wire array Z-pinches on the YANG accelerator with a peak current 0.8-1.1 MA and a rising time ~ 90 ns.The arrays are made up of(8-32)×5 μm wires 6/10 mm in diameter and 15 mm in height.The highest X-ray power obtained in the experiments was about 0.37 TW with the total radiation energy ~ 13 kJ and the energy conversion efficiency ~ 9%(24×5 μm wires,6 mm in diameter).Most of the X-ray emissions from tungsten Z-pinch plasmas were distributed in the spectral band of 100-600 eV,peaked at 250 and 375 eV.The dominant wavelengths of the wire ablation and the magneto-Rayleigh-Taylor instability were found and analyzed through measuring the time-gated self-emission and laser interferometric images.Through analyzing the implosion trajectories obtained by an optical streak camera,the run-in velocities of the Z-pinch plasmas at the end of the implosion phase were determined to be about(1.3-2.1)×10 7 cm/s.展开更多
In this study, the mechanical properties of tungsten-rhenium wires with nanofibrous microstructure were investigated at both room temperature(RT) and 800?C. The strengthening mechanism associated to the nanofibrous mi...In this study, the mechanical properties of tungsten-rhenium wires with nanofibrous microstructure were investigated at both room temperature(RT) and 800?C. The strengthening mechanism associated to the nanofibrous microstructure was discussed. The results showed that the tungsten-rhenium wires with nanofibrous grains exhibited a very high tensile strength reaching values of 3.5 GPa and 4.4 GPa for the coarse(grains diameter of 240 nm) and fine(grains diameter of 80 nm) wires, respectively. With increasing the temperature from RT to 800?C, the tensile strength decreased slightly but still held high values(1.8 GPa and 3.8 GPa). All the fracture surfaces exhibited apparent necking and characteristics of spear-edge shaped fracture surface, indicating excellent ductility of the wires. A model of the strengthening mechanism of these tungsten-rhenium wires was proposed.展开更多
Nanodevices using the photovoltaic effect of a single nanowire have attracted growing interest. In this paper, we consider potential applications of the photovoltaic effect to optical signal coupling and optical power...Nanodevices using the photovoltaic effect of a single nanowire have attracted growing interest. In this paper, we consider potential applications of the photovoltaic effect to optical signal coupling and optical power transmission, and report on the realization of a heterojunction formed between WO2 and WO3 in a fine-wire having a diameter on the micrometer scale. Using a laser beam of 514.5 nm as a signal source, the WO2-WO3 heterojunction yields a maximum output power of up to 37.4 pico watt per heterojunction. Fast responses (less than a second) of both photovoltaic voltage and current are also observed. In addition, we demonstrate that it is a simple and effective way to adapt a commercial Raman spectrometer for the combined functions of fabrication, material characterization and photovottaic measurement of an optical signal coupler and optical power transmitter based on a fine-wire. Our results show an attractive perspective of developing nanowire or fine-wire elements for coupling optical signals into and for powering a nanoelectronic or nano-optoelectronic integrated circuit that works under the condition of preventing it from directly electrically connecting with the optical coupler.展开更多
To improve the mechanical properties of AA6082 weld welded by tungsten inert gas welding using AA4043 welding wire, the effect of addition of Ti and/or Sr on continuous cast and rolled AA4043 welding wire was investig...To improve the mechanical properties of AA6082 weld welded by tungsten inert gas welding using AA4043 welding wire, the effect of addition of Ti and/or Sr on continuous cast and rolled AA4043 welding wire was investigated. Experimental results indicated that Ti and Sr are excellent modifiers, which improve the microstructure of the AA4043 welding wire and enhance the mechanical properties of the AA6082 weld. It was found that the combinative addition of Ti and Sr can effectively modify both the α(Al) dendrites and eutectic Si phases compared with individual addition of Ti or Sr. In addition, Ti and/or Sr also changed the microstructure of the AA6082 weld. The tensile strength of the AA6082 weld reached the maximum value when 0.08% Ti and 0.025% Sr were added simultaneously. These results indicate that the combinative addition of Ti and Sr can be an effective composite modifier.展开更多
This paper introduces a new method for fixing type of the tungsten carbide roll ring for high speed wire rolling mills, and analyses the stresses of the roll ring. The lifetime of roll pass is twice longer that of the...This paper introduces a new method for fixing type of the tungsten carbide roll ring for high speed wire rolling mills, and analyses the stresses of the roll ring. The lifetime of roll pass is twice longer that of the old one.展开更多
Sol-gel method was employed for the preparation of nanoscale tungsten powder. The effects of different preparation conditions on particle size were discussed and the optimum preparation condition was found. The produc...Sol-gel method was employed for the preparation of nanoscale tungsten powder. The effects of different preparation conditions on particle size were discussed and the optimum preparation condition was found. The products were characterized by X-ray diffraction, scan electron microscopy and so on. The results show that the intermediate is monoclinic WO3, its particle shape is approximately spherical, and the particle size distribution is narrow. The average particle size is about 60 nm. After deoxidization, WO3 turns into cubic tungsten powder with small particle size (average particle size about 120 nm) and narrow size distribution.展开更多
In the present study nano-tungsten carbide particles were generated in a wire explosion process.The plasma generated during the wire explosion process was analyzed using optical emission spectroscopy(OES).The impact...In the present study nano-tungsten carbide particles were generated in a wire explosion process.The plasma generated during the wire explosion process was analyzed using optical emission spectroscopy(OES).The impact of ambient pressure on the plasma temperature,electron density and plasma lifetime was studied.Lifetime variations of the plasma produced under different experimental conditions were analyzed.The produced nanoparticles were characterized through wide angle X-ray diffraction(WAXD) and transmission electron microscopy(TEM) studies. Particles produced with a negative DC charging voltage had a larger mean size when compared to a positive charging voltage.Polarity dependence on the plasma duration was observed where plasma was sustained for a longer duration with a negative DC charging voltage.展开更多
Compared with a copper wire electrode, molybdenum wire with a poor conductor is usually used as the electrode in high speed wire-cut electrical discharge machining(HSWEDM), so the resistance of an ultra-fine wire cann...Compared with a copper wire electrode, molybdenum wire with a poor conductor is usually used as the electrode in high speed wire-cut electrical discharge machining(HSWEDM), so the resistance of an ultra-fine wire cannot be ignored. To study the differences of discharge characteristics between the ultra-fine wire and the conventional diameter wire, the continuous discharge waveform of two kinds of wire electrodes was compared. It was found that there was a multichannel discharge phenomenon in the discharge waveform cutting by ultra-fine wire. Through the establishment of a discharge equivalent circuit model and the simulation analysis of the electrostatic field, it was found that the reason why ultra-fine wire is easy to form multi-channel discharge phenomenon is that the potential difference between the wire and the workpiece increased linearly along the axis of the wire. Besides, etching products like metal particles will distort the electric field between the electrodes. Both of them make it easy to form a multi-channel discharge in machining.The results show that the distributions of the equivalent resistance and the peak current are affected by the multi-channel discharge position. Multi-channel discharge can disperse energy and increase effective discharge frequency. Compared with the 0 mm spacing, at a spacing of 100 mm, the machining efficiency increases by 8.7%, the surface roughness decreases by 37.7%, and the average recast layer thickness decreases by 46.6% under the condition of ultra-fine wire-EDM.展开更多
基金roject (50634060) supported by the National Natural Science Foundation of ChinaProject (2010GB109000) supported by the National Basic Research Program of China
文摘Pure tungsten, oxide dispersion strengthened tungsten and carbide dispersion strengthened tungsten were fabricated by high-energy ball milling and spark plasma sintering process. In order to evaluate the properties of the tungsten alloys under transient high heat flues, four tungsten samples with different grain sizes were tested by high-intensity pulsed ion beam with a heat flux as high as 160 MW/(m^2·s^-1/2). Compared with the commercial tungsten, the surface modification of the oxide dispersion strengthened tungsten by high-intensity pulsed ion beam is completely different. The oxide dispersion strengthened tungsten shows inferior thermal shock response due to the low melting point second phase of Ti and Y2O3, which results in the surface melting, boiling bubbles and cracking. While the carbide dispersion strengthened tungsten shows better thermal shock response than the commercial tungsten.
基金supported by the Key Project of Chinese Academy of Sciences(No.KJCX2-YW-N35)National Natural Science Foundation of China(No.11175205)
文摘Tests of the candidate plasma facing materials(PFMs) used in experimental fusion devices are essential due to the direct influence of in-situ plasma loading.A type of ultrafine grained(UFG) tungsten sintered by resistance sintering under ultra-high pressure(RSUHP) method has been exposed in the edge plasma of the HT-7 tokamak to investigate its performance under plasma loading.Under cychc edge plasma loading,the UFG tungsten develops both macro and micro cracks.The macro cracks are attributed to the low temperature brittleness of the tungsten material itself,while the micro cracks are generated from local intense power flux deposition.
文摘Cu47Ti33Zr11Ni6Sn2Si1-based bulk metallic glass matrix composites reinforced with tungsten wires were fabricated by infiltration process at different temperatures (850, 900, 950 and 1000 °C) and time (10, 20 and 30 min) in a quartz or a steel tube. The mechanical tests were carried out by scanning electron microscopy (SEM) and X-ray diffraction (XRD). The results show that the maximum strength and total strain of the composite are 1778 MPa and 2.8% fabricated in steel tube at 900 °C for 10 min, and 1582 MPa and 3.6% fabricated in quartz tube at 850 °C for 10 min, respectively.
基金Project supported by the National Natural Science Foundation of China (Grant No. 10635050)
文摘We investigated the radiation characteristics and implosion dynamics of low-wire-number cylindrical tungsten wire array Z-pinches on the YANG accelerator with a peak current 0.8-1.1 MA and a rising time ~ 90 ns.The arrays are made up of(8-32)×5 μm wires 6/10 mm in diameter and 15 mm in height.The highest X-ray power obtained in the experiments was about 0.37 TW with the total radiation energy ~ 13 kJ and the energy conversion efficiency ~ 9%(24×5 μm wires,6 mm in diameter).Most of the X-ray emissions from tungsten Z-pinch plasmas were distributed in the spectral band of 100-600 eV,peaked at 250 and 375 eV.The dominant wavelengths of the wire ablation and the magneto-Rayleigh-Taylor instability were found and analyzed through measuring the time-gated self-emission and laser interferometric images.Through analyzing the implosion trajectories obtained by an optical streak camera,the run-in velocities of the Z-pinch plasmas at the end of the implosion phase were determined to be about(1.3-2.1)×10 7 cm/s.
基金financially supported by the National Natural Science Foundation of China(No.51271021)Beijing Natural Science Foundation(No.2162025)State Key Laboratory for Advanced Metals and Materials,University of Science and Technology Beijing
文摘In this study, the mechanical properties of tungsten-rhenium wires with nanofibrous microstructure were investigated at both room temperature(RT) and 800?C. The strengthening mechanism associated to the nanofibrous microstructure was discussed. The results showed that the tungsten-rhenium wires with nanofibrous grains exhibited a very high tensile strength reaching values of 3.5 GPa and 4.4 GPa for the coarse(grains diameter of 240 nm) and fine(grains diameter of 80 nm) wires, respectively. With increasing the temperature from RT to 800?C, the tensile strength decreased slightly but still held high values(1.8 GPa and 3.8 GPa). All the fracture surfaces exhibited apparent necking and characteristics of spear-edge shaped fracture surface, indicating excellent ductility of the wires. A model of the strengthening mechanism of these tungsten-rhenium wires was proposed.
基金Project supported by the National Natural Science Foundation of China (Grant Nos. U0634002,50725206 and 50672135)the National Basic Research Program of China (Grant Nos. 2003CB314701,2007CB935501 and 2008AA03A314)the Department of Information Industry of Guangdong Province,China
文摘Nanodevices using the photovoltaic effect of a single nanowire have attracted growing interest. In this paper, we consider potential applications of the photovoltaic effect to optical signal coupling and optical power transmission, and report on the realization of a heterojunction formed between WO2 and WO3 in a fine-wire having a diameter on the micrometer scale. Using a laser beam of 514.5 nm as a signal source, the WO2-WO3 heterojunction yields a maximum output power of up to 37.4 pico watt per heterojunction. Fast responses (less than a second) of both photovoltaic voltage and current are also observed. In addition, we demonstrate that it is a simple and effective way to adapt a commercial Raman spectrometer for the combined functions of fabrication, material characterization and photovottaic measurement of an optical signal coupler and optical power transmitter based on a fine-wire. Our results show an attractive perspective of developing nanowire or fine-wire elements for coupling optical signals into and for powering a nanoelectronic or nano-optoelectronic integrated circuit that works under the condition of preventing it from directly electrically connecting with the optical coupler.
基金Project(2015A12225)supported by the Key Technical Innovation Project Foundation of Jinhua City,ChinaProject supported by the Priority Academic Program Development(PAPD)of Jiangsu Higher Education Institutions,China
文摘To improve the mechanical properties of AA6082 weld welded by tungsten inert gas welding using AA4043 welding wire, the effect of addition of Ti and/or Sr on continuous cast and rolled AA4043 welding wire was investigated. Experimental results indicated that Ti and Sr are excellent modifiers, which improve the microstructure of the AA4043 welding wire and enhance the mechanical properties of the AA6082 weld. It was found that the combinative addition of Ti and Sr can effectively modify both the α(Al) dendrites and eutectic Si phases compared with individual addition of Ti or Sr. In addition, Ti and/or Sr also changed the microstructure of the AA6082 weld. The tensile strength of the AA6082 weld reached the maximum value when 0.08% Ti and 0.025% Sr were added simultaneously. These results indicate that the combinative addition of Ti and Sr can be an effective composite modifier.
文摘This paper introduces a new method for fixing type of the tungsten carbide roll ring for high speed wire rolling mills, and analyses the stresses of the roll ring. The lifetime of roll pass is twice longer that of the old one.
文摘Sol-gel method was employed for the preparation of nanoscale tungsten powder. The effects of different preparation conditions on particle size were discussed and the optimum preparation condition was found. The products were characterized by X-ray diffraction, scan electron microscopy and so on. The results show that the intermediate is monoclinic WO3, its particle shape is approximately spherical, and the particle size distribution is narrow. The average particle size is about 60 nm. After deoxidization, WO3 turns into cubic tungsten powder with small particle size (average particle size about 120 nm) and narrow size distribution.
文摘In the present study nano-tungsten carbide particles were generated in a wire explosion process.The plasma generated during the wire explosion process was analyzed using optical emission spectroscopy(OES).The impact of ambient pressure on the plasma temperature,electron density and plasma lifetime was studied.Lifetime variations of the plasma produced under different experimental conditions were analyzed.The produced nanoparticles were characterized through wide angle X-ray diffraction(WAXD) and transmission electron microscopy(TEM) studies. Particles produced with a negative DC charging voltage had a larger mean size when compared to a positive charging voltage.Polarity dependence on the plasma duration was observed where plasma was sustained for a longer duration with a negative DC charging voltage.
基金co-supported by the National Natural Science Foundation of China (Nos. 51575271 and 51975290)。
文摘Compared with a copper wire electrode, molybdenum wire with a poor conductor is usually used as the electrode in high speed wire-cut electrical discharge machining(HSWEDM), so the resistance of an ultra-fine wire cannot be ignored. To study the differences of discharge characteristics between the ultra-fine wire and the conventional diameter wire, the continuous discharge waveform of two kinds of wire electrodes was compared. It was found that there was a multichannel discharge phenomenon in the discharge waveform cutting by ultra-fine wire. Through the establishment of a discharge equivalent circuit model and the simulation analysis of the electrostatic field, it was found that the reason why ultra-fine wire is easy to form multi-channel discharge phenomenon is that the potential difference between the wire and the workpiece increased linearly along the axis of the wire. Besides, etching products like metal particles will distort the electric field between the electrodes. Both of them make it easy to form a multi-channel discharge in machining.The results show that the distributions of the equivalent resistance and the peak current are affected by the multi-channel discharge position. Multi-channel discharge can disperse energy and increase effective discharge frequency. Compared with the 0 mm spacing, at a spacing of 100 mm, the machining efficiency increases by 8.7%, the surface roughness decreases by 37.7%, and the average recast layer thickness decreases by 46.6% under the condition of ultra-fine wire-EDM.