期刊文献+
共找到1,036篇文章
< 1 2 52 >
每页显示 20 50 100
Greatly enhanced corrosion/wear resistances of epoxy coating for Mg alloy through a synergistic effect between functionalized graphene and insulated blocking layer 被引量:1
1
作者 Z.Y.Xue X.J.Li +3 位作者 J.H.Chu M.M.Li D.N.Zou L.B.Tong 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2024年第1期332-344,共13页
The poor corrosion and wear resistances of Mg alloys seriously limit their potential applications in various industries.The conventional epoxy coating easily forms many intrinsic defects during the solidification proc... The poor corrosion and wear resistances of Mg alloys seriously limit their potential applications in various industries.The conventional epoxy coating easily forms many intrinsic defects during the solidification process,which cannot provide sufficient protection.In the current study,we design a double-layer epoxy composite coating on Mg alloy with enhanced anti-corrosion/wear properties,via the spin-assisted assembly technique.The outer layer is functionalized graphene(FG)in waterborne epoxy resin(WEP)and the inner layer is Ce-based conversion(Ce)film.The FG sheets can be homogeneously dispersed within the epoxy matrix to fill the intrinsic defects and improve the barrier capability.The Ce film connects the outer layer with the substrate,showing the transition effect.The corrosion rate of Ce/WEP/FG composite coating is 2131 times lower than that of bare Mg alloy,and the wear rate is decreased by~90%.The improved corrosion resistance is attributed to the labyrinth effect(hindering the penetration of corrosive medium)and the obstruction of galvanic coupling behavior.The synergistic effect derived from the FG sheet and blocking layer exhibits great potential in realizing the improvement of multi-functional integration,which will open up a new avenue for the development of novel composite protection coatings of Mg alloys. 展开更多
关键词 Mg alloy Functionalized graphene Epoxy coating Corrosion/wear resistance Blocking layer
下载PDF
Large energy-loss straggling of swift heavy ions in ultra-thin active silicon layers 被引量:2
2
作者 张战刚 刘杰 +13 位作者 侯明东 孙友梅 赵发展 刘刚 韩郑生 耿超 刘建德 习凯 段敬来 姚会军 莫丹 罗捷 古松 刘天奇 《Chinese Physics B》 SCIE EI CAS CSCD 2013年第9期505-511,共7页
Monte Carlo simulations reveal considerable straggling of energy loss by the same ions with the same energy in fully-depleted silicon-on-insulator (FDSOI) devices with ultra-thin sensitive silicon layers down to 2.5... Monte Carlo simulations reveal considerable straggling of energy loss by the same ions with the same energy in fully-depleted silicon-on-insulator (FDSOI) devices with ultra-thin sensitive silicon layers down to 2.5 rim. The absolute straggling of deposited energy decreases with decreasing thickness of the active silicon layer. While the relative straggling increases gradually with decreasing thickness of silicon films and exhibits a sharp rise as the thickness of the silicon film descends below a threshold value of 50 nm, with the dispersion of deposited energy ascending above ~10%. Ion species and energy dependence of the energy-loss straggling are also investigated. For a given beam, the dispersion of deposited energy results in large uncertainty on the actual linear energy transfer (LET) of incident ions, and thus single event effect (SEE) responses, which pose great challenges for traditional error rate prediction methods. 展开更多
关键词 single event effects energy-loss straggling ultra-thin silicon layer Monte Carlo simulation
下载PDF
Microstructure and abrasion wear behavior of Ni-based laser cladding alloy layer at high temperature 被引量:3
3
作者 刘勇 刘素芹 王顺兴 《Journal of Central South University of Technology》 EI 2005年第4期403-405,共3页
Ni-based alloy coating on 21-4-N heat-resistant steel was prepared using CO2 laser, and the high-temperature abrasion wear was tested. The microstructure of this cladding layer and its abrasion wear behavior at high t... Ni-based alloy coating on 21-4-N heat-resistant steel was prepared using CO2 laser, and the high-temperature abrasion wear was tested. The microstructure of this cladding layer and its abrasion wear behavior at high temperature by changing compositions and temperatures were investigated by means of optical microscope and scanning electron microscope. Among the three compositions of cladding layer, i.e. Ni21+20%WC+0.5%CeO2, Ni25+20%WC+0.5%CeO2 and Ni60+20%WC+0.5%CeO2, the experimental results show that Ni21+20%WC+ 0.5%CeO2 cladding layer is made up of finer grains, and presents the best abrasion wear behavior at high temperature. The wear pattern of laser cladding layer is mainly grain abrasion at lower temperature, and it would be changed to adhesive abrasion and oxide abrasion at higher temperature. 展开更多
关键词 Ni-based laser cladding layer MICROSTRUCTURE abrasion wear behavior high temperature
下载PDF
Plasma Surface Cu Alloyed Layer as a Lubricant on Stainless Steel Sheet:Wear Characteristics and On-job Performance in Incremental Forming 被引量:1
4
作者 吴红艳 WEI Hongyu +3 位作者 Ghulam Hussain TAO Kemei Asif Iqbal 饶伟峰 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2016年第2期422-428,共7页
To solve the problems of poor forming and easy adhesion of the stainless steel,Cu alloyed layer on the stainless steels was prepared by the double glow plasma surface alloying technique.The experimentalresults indicat... To solve the problems of poor forming and easy adhesion of the stainless steel,Cu alloyed layer on the stainless steels was prepared by the double glow plasma surface alloying technique.The experimentalresults indicated that the supersaturated copper dispersedly precipitated in grain interior and crystalboundaries and formed the vermicular structure.The tribologicaltests indicated that the friction coefficient of the Cu alloyed layer was lower than that of the stainless steels.The wear rate of stainless steelin the presence of Cu alloyed layer was approximately 2-fold lower than that in the absence of the alloyed layer.The results of the incrementalforming indicated that the ploughing phenomenon was not observed on the stainless steelin the presence of Cu alloyed layer during the incrementalforming,while the stainless steelpresented the deep ploughing.Therefore,Cu alloyed layer on stainless steelexhibited excellent self-lubrication and forming properties. 展开更多
关键词 Cu alloyed layer stainless steels incremental forming friction and wear
下载PDF
Wear Performance of Ni/ZrO_2 Infiltrated Composite Layer
5
作者 SUN Xianming YANG Guirong +3 位作者 SONG Wenming LI Jian MA Yin ZHOU You 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2012年第1期73-78,共6页
The Ni/ZrO2 was used as raw materials to fabricate the surface infiltrated composite layer with 1-4 mm thickness on cast steel substrate through vacuum infiltrated casting technology. The microstructure indicated that... The Ni/ZrO2 was used as raw materials to fabricate the surface infiltrated composite layer with 1-4 mm thickness on cast steel substrate through vacuum infiltrated casting technology. The microstructure indicated that the infiltrated composite layer included surface composite layer and transition layer. Wear property was investigated under room temperature and 450 ~C. The results indicated that the abrasion volume of substrate was 8 times that of the infiltrated composite layer at room temperature. The friction coefficient of infiltrated composite layer decreased with the increasing load. The wear resistance of infiltrated composite layer with different ZrO2 contents had been improved obviously under high temperature. The friction coefficient of infiltrated composite layer was decreased comparing with that at room temperature. The oxidation, abrasive and fatigue abrasion was the main wear mechanism at room temperature. Oxidation abrasion, fatigue wear and adhesive wear dominated the wearin~ process under elevated temperature. 展开更多
关键词 Ni/ZrO2 infiltrated composite layer MICRO-STRUCTURE room temperature high temperature wear resistance
下载PDF
Optical properties of ultra-thin InN layer embedded in InGaN matrix for light emitters
6
作者 杨薇 武翌阳 +3 位作者 刘宁炀 刘磊 陈钊 胡晓东 《Chinese Physics B》 SCIE EI CAS CSCD 2013年第4期482-485,共4页
We theoretically investigate the optical properties of an ultra-thin InN layer embedded in InGaN matrix for light emitters. The peak emission wavelength extends from ultraviolet (374 nm) to green (536 nm) with InN... We theoretically investigate the optical properties of an ultra-thin InN layer embedded in InGaN matrix for light emitters. The peak emission wavelength extends from ultraviolet (374 nm) to green (536 nm) with InN quantum well thickness increasing from 1 monolayer to 2 monolayers, while the overlap of electron–hole wave function remains at a high level (larger than 90%). Increase of In content in InGaN matrix provides a better approach to longer wavelength emission, which only reduces the spontaneous emission rate slightly compared with the case of increasing In content of the conventional InGaN quantum well. Also, the transparency carrier density derived from gain spectrum is of the same order as that in the conventional blue laser diode. Our study provides skillful design on the development of novel structure InN-based light emitting diodes as well as laser diodes. 展开更多
关键词 InN ultra-thin layer spontaneous emission spectra GAIN laser diodes
下载PDF
Study on characteristics of a double-conductible channel organic thin-film transistor with an ultra-thin hole-blocking layer
7
作者 袁广才 徐征 +4 位作者 赵谡玲 张福俊 许娜 田雪雁 徐叙瑢 《Chinese Physics B》 SCIE EI CAS CSCD 2009年第9期3990-3994,共5页
The properties of top-contact organic thin-film transistors (TC-OTFTs) using ultra-thin 2, 9-dimethyl-4, 7- diphenyl-1, 10-phenanthroline (BCP) as a hole-blocking interlayer have been improved significantly and a ... The properties of top-contact organic thin-film transistors (TC-OTFTs) using ultra-thin 2, 9-dimethyl-4, 7- diphenyl-1, 10-phenanthroline (BCP) as a hole-blocking interlayer have been improved significantly and a BCP interlayer was inserted into the middle of the pentacene active layer. This paper obtains a fire-new transport mode of an OTFT device with double-conductible channels. The accumulation and transfer of the hole carriers arc limited by the BCP interlayer in the vertical region of the channel. A huge amount of carriers is located not only at the interface between pentacene and the gate insulator, but also at the two interfaces of pentacene/BCP interlayer and pentacene/gate insulator, respectively. The results suggest that the BCP interlayer may be useful to adjust the hole accumulation and transfer, and can increase the hole mobility and output current of OTFTs. The TC-OTFTs with a BCP interlayer at VDS = --20 V showed excellent hole mobility μFE and threshold voltage VTH of 0.58 cm^2/(V-s) and -4.6 V, respectively. 展开更多
关键词 organic thin-film transistor ultra-thin hole-blocking layer double-conductible channels
下载PDF
On the viability of wearing evaluation by Thin Layer Activation in the presence of non-occupationally exposed individuals
8
作者 Michel de Almeida Franca Julio Cezar Suita +1 位作者 Paulo Fernando Ferreira Frutuoso e Melo Celso Marcelo Franklin Lapa 《Nuclear Science and Techniques》 SCIE EI CAS CSCD 2022年第3期103-112,共10页
Thin Layer Activation is a nuclear technique that has key advantages over other wear measuring techniques for mechanical systems,especially for in site experiments on equipment important to safety in nuclear plants.St... Thin Layer Activation is a nuclear technique that has key advantages over other wear measuring techniques for mechanical systems,especially for in site experiments on equipment important to safety in nuclear plants.Still,it incurs radioactive dose and,thus,must be proved radiologically safe before use,otherwise,the utilization of this technique may be hindered inviable.Proving said technique is safe previous to any operational/monetary cost is key,providing a methodology for this early assertion is the main contribution of this work—here,only non-occupationally exposed individuals are considered.This work offers a methodology,through a case study,to ascertain the Thin Layer Activation parameters to obtain safe levels of radioactive dose while maintaining statistically reliable results.This methodology consists of using simulations,through the Monte Carlo Method,to obtain the floors and ceilings for the previously mentioned activation parameters based on operation and work conditions on site. 展开更多
关键词 Thin layer Activation Safety evaluation Simulation Equipment wearing
下载PDF
MICROSTRUCTURE AND MECHANISM OF A NEW TYPE OF Ni-Fe-W-P-S WEAR-RESISTANT BRUSH PLATING LAYER
9
作者 惠文华 张瑾平 +4 位作者 邵力为 张远明 朱育平 刘家浚 朱宝亮 《Journal of Southeast University(English Edition)》 EI CAS 1994年第1期58-64,共7页
A new type of Ni-Fe-W-P-S wear-resistant brush plating layer isdeveloped, and its microstructure is investigated at different temperatures by usingX-ray diffractometer, transmission electron microscope and surface ana... A new type of Ni-Fe-W-P-S wear-resistant brush plating layer isdeveloped, and its microstructure is investigated at different temperatures by usingX-ray diffractometer, transmission electron microscope and surface analytical appa-ratus. The results revealed that the plating layer is composed of amorphous and mi-crocrystalline matrix and intermetallic compounds. Such a microstructure is verybeneficial to improving its wear-resistance.This new type of plating layer can replacethe chromium plating technique which is very poisonous for human health and harm-ful to the agricultural production. 展开更多
关键词 microstucture wear-RESISTANCE BRUSH PLATING layer
下载PDF
Effect of Micro-addition Rare Earth and Chrome on Friction and Wear Behavior of Boronized layer
10
作者 XUBin WANGShu-hua +2 位作者 LUYu-peng CUIJian-jun LIMu-sen 《材料热处理学报》 EI CAS CSCD 北大核心 2004年第05B期698-701,共4页
Application of powder boronizing to mechanical industry has been restricted because of the brittleness of boronized layer, which inevitably leads to decrease of service life of boronized parts. Therefore, attention sh... Application of powder boronizing to mechanical industry has been restricted because of the brittleness of boronized layer, which inevitably leads to decrease of service life of boronized parts. Therefore, attention should be paid to reducing the brittleness of boronized layer without decreasing its high hardness. In the present paper, a study on the effect of micro-addition rare earth and chrome on friction and wear behavior of boronized layer was carried out using an MM-200 wear test machine. Compared with that of pure single Fe2B phase, the brittleness of the boronized layer containing minim rare earth and chrome elements, obtained by powder RE-chrome-boronizing, is reduced, which results in increasing the bearing capacity and wear resistance of the boronized layer. The friction and wear mechanism is also briefly analyzed. 展开更多
关键词 渗硼 磨损性能 稀土 脆性 铬合金
下载PDF
Improving wear resistance of magnesium alloy AZ91D by TiN-CrN multilayer coating
11
作者 缪强 崔彩娥 +1 位作者 潘俊德 张平则 《中国有色金属学会会刊:英文版》 CSCD 2006年第A03期1802-1805,共4页
Applying a novel method of arc-glow plasma depositing, a 2μm-thick coating with 12 sub-layers of TiN and CrN was deposited alternately on the surface of magnesium alloy AZ91D to improve its wear resistance. The wear ... Applying a novel method of arc-glow plasma depositing, a 2μm-thick coating with 12 sub-layers of TiN and CrN was deposited alternately on the surface of magnesium alloy AZ91D to improve its wear resistance. The wear behavior was investigated by test of ball on disc sliding. The composition and microstructure of the coating were also analyzed by means of X-ray diffraction (XRD) and glow discharge spectrum (GDS), and the morphology of TiN-CrN film was surveyed through scanning electronic microscopy (SEM) and atom force microscopy (AFM).The adhesion strength between film and matrix was evaluated by ways of stick-peeling test. The surface micro-hardness of the coating is above HK0.011 433, and the specific wear ratio of specimens coated with TiN-CrN films tested decreases greatly compared to that of the bare metal. 展开更多
关键词 镁合金 等离子体 涂层 有色金属 强度
下载PDF
基于耦合界面键合效应的石墨烯磨损研究
12
作者 郑云飞 卢艳 《原子与分子物理学报》 CAS 北大核心 2025年第6期66-75,共10页
石墨烯作为二维固体润滑材料,其超滑特性不仅是物理作用结果,其化学键结构机制下的摩擦化学现象,是深入理解石墨烯摩擦性能的关键.本文采用分子动力学(MD)方法构建了多重层数石墨烯增强不同粗糙形貌的金属基底模型,实现了其与金刚石尖... 石墨烯作为二维固体润滑材料,其超滑特性不仅是物理作用结果,其化学键结构机制下的摩擦化学现象,是深入理解石墨烯摩擦性能的关键.本文采用分子动力学(MD)方法构建了多重层数石墨烯增强不同粗糙形貌的金属基底模型,实现了其与金刚石尖端滑动过程的动态分析,揭示了考虑尖端与石墨烯之间存在界面键时石墨烯层的理化耦合作用下的磨损机理.研究结果表明:当考虑金刚石尖端与石墨烯之间化学键合时,石墨烯发生磨损破裂的临界载荷相对于不考虑界面化学键时的值减小,这是由于界面键的形成会剥离石墨烯导致石墨烯断裂所致;金属基底的粗糙度也是决定石墨烯发生磨损破裂时临界载荷的重要因素之一,当粗糙度增大,临界载荷减小,同时通过增加石墨烯层的层数(增韧)来提高石墨烯发生磨损破裂失效的临界载荷. 展开更多
关键词 石墨烯层 界面键 分子动力学 磨损破裂
下载PDF
Friction and wear properties of copper matrix composites reinforced by tungsten-coated carbon nanotubes 被引量:4
13
作者 NIE Junhui JIA Xian +3 位作者 JIA Chengchang LI Yi ZHANG Yafeng SHI Na 《Rare Metals》 SCIE EI CAS CSCD 2011年第6期657-663,共7页
Carbon nanotubes (CNTs) were coated by tungsten layer using metal organic chemical vapor deposition process with tungsten hexacarbonyl as a precursor. The W-coated CNTs (W-CNTs) were dispersed into Cu powders by m... Carbon nanotubes (CNTs) were coated by tungsten layer using metal organic chemical vapor deposition process with tungsten hexacarbonyl as a precursor. The W-coated CNTs (W-CNTs) were dispersed into Cu powders by magnetic stirring process and then the mixed powders were consolidated by spark plasma sintering to fabricate W-CNTs/Cu composites. The CNTs/Cu composites were fabricated using the similafprocesses. The friction coefficient and mass wear loss of W-CNTs/Cu and CNTs/Cu composites were studied. The results showed that the W-CNT content, interfacial bonding situation, and applied load could influence the friction coefficient and wear loss of W-CNTs/Cu com- posites. When the W-CNT content was 1.0 wt.%, the W-CNTs/Cu composites got the minimum friction coefficient and wear loss, which were decreased by 72.1% and 47.6%, respectively, compared with pure Cu specimen. The friction coefficient and wear loss of W-CNTs/Cu composites were lower than those of CNTs/Cu composites, which was due to that the interracial bonding at (W-CNTs)-Cu interface was better than that at CNTs-Cu interface. The friction coefficient of composites did not vary obviously with increasing applied load, while the wear loss of composites increased significantly with the increase of applied load. 展开更多
关键词 carbon nanotubes tungsten layer COPPER friction coefficient wear loss
下载PDF
Sliding Wear of the Hybrid Kevlar/PTFE Fabric Reinforced Phenolic Composite Filled with Nano-titania 被引量:4
14
作者 YANG Yulin HUANG Shijun +2 位作者 ZU Dalei ZHANG Ruijun QI Xiaowen 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2011年第1期154-159,共6页
The Kevlar/polytetrafluroethylene(Kevlar/PTFE) fabric composite can be used as a self-lubricating liner of the self-lubricating bearing.Many types of nano-particles can improve the tribological performance of the po... The Kevlar/polytetrafluroethylene(Kevlar/PTFE) fabric composite can be used as a self-lubricating liner of the self-lubricating bearing.Many types of nano-particles can improve the tribological performance of the polymer-based composite.Unfortunately,up to now,published work on the effect of nano-particles on the tribological performance of the fabric composite which can be used as a self-lubricating liner is quite scarce.Therefore,for the purpose of exploring a way to significantly improve the tribological performance of the fabric composite,the tribological performance of the Kevlar/PTFE fabric composite filled with nano-titania is evaluated by using the block-on-ring wear tester.The scanning electron microscopy is utilized to observe the morphologies of worn surfaces of the fabric composites and the counterparts.The tensile properties of the composites are evaluated on the universal material testing machine.The test results show that the addition of nano-titania at a proper mass fraction of the matrix resin improves the wear resistance and the tensile strength,decreases the friction coefficient,and makes the wear volume of the composite reach a relative steady state more quickly;plastic deformation and microcutting are important for the wear of the fabric composite;a lubricating layer is formed on the worn surface of the composite during sliding,and the lubricating layer is critical for the tribological performance of the composite;the formation and properties of the lubricating layer are influenced by the nano-titania particles.The proposed study on the effect of nano-titania on the tribological performance of the Kevlar/PTFE fabric composite,especially on the evolution of the worn surface of the composite,provides the basis for further understanding of the influence mechanism of the nano-particles on the tribological performance of the composite and explores a method of improving the tribological performance of the composite. 展开更多
关键词 hybrid Kevlar/PTFE fabric composite self-lubricating liner nano-titania friction and wear lubricating layer
下载PDF
Wear behavior and dry sliding tribological properties of ultra-fine grained Al5083 alloy and boron carbide-reinforced Al5083-based composite at room and elevated temperatures 被引量:7
15
作者 Matin SAESSI Ali ALIZADEH Alireza ABDOLLAHI 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2021年第1期74-91,共18页
Tribological behavior and wear mechanisms of mechanically milled Al5083 alloy and Al5083−5wt.%B4C composite at room temperature and 200°C were discussed.Results revealed that due to the oxidative wear at room tem... Tribological behavior and wear mechanisms of mechanically milled Al5083 alloy and Al5083−5wt.%B4C composite at room temperature and 200°C were discussed.Results revealed that due to the oxidative wear at room temperature,a mechanically mixed layer(MML)was formed to protect the surface of the samples.Under 80 N of load at room temperature,the milled Al5083 and the Al5083−5wt.%B4C samples showed evidence of abrasion with limited volume loss.In this case,the wear rates were 5.8×10−7 and 4.4×10−7 mm3/(m·N),respectively.At 200°C and under 80 N of applied load,severe wear occurred in the milled Al5083 sample,and wear rate reached 10.8×10−7 mm3/(m·N)while the Al5083−5wt.%B4C sample showed mild wear with local 3-body abrasion and the wear rate reached 5.3×10−7 mm3/(m·N).Strengthening mechanisms such as dislocation pinning and the Hall−Petch theory,high hardness and the load transfer effect were crucial in determining the wear behavior of the Al5083−5wt.%B4C composite.On the other hand,the milled Al5083 sample represented a relatively high wear rate at 200°C,which seemed to be related to the local grain growth and a drop in its hardness. 展开更多
关键词 tribological behavior oxidative wear mechanically mixed layer wear rate Hall−Petch theory
下载PDF
Hardening Effect on Machined Surface for Precise Hard Cutting Process with Consideration of Tool Wear 被引量:3
16
作者 YUE Caixu LIU Xianli +3 位作者 MA Jing LIU Zhaojing LIU Fei YANG Yongheng 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2014年第6期1249-1256,共8页
During hard cutting process there is severe thermodynamic coupling effect between cutting tool and workpiece, which causes quenching effect on finished surfaces under certain conditions. However, material phase transf... During hard cutting process there is severe thermodynamic coupling effect between cutting tool and workpiece, which causes quenching effect on finished surfaces under certain conditions. However, material phase transformation mechanism of heat treatment in cutting process is different from the one in traditional process, which leads to changes of the formation mechanism of damaged layer on machined workpiece surface. This paper researches on the generation mechanism of damaged layer on machined surface in the process of PCBN tool hard cutting hardened steel Cr12MoV. Rules of temperature change on machined surface and subsurface are got by means of finite element simulation. In phase transformation temperature experiments rapid transformation instrument is employed, and the effect of quenching under cutting conditions on generation of damaged layer is revealed. Based on that, the phase transformation points of temperature under cutting conditions are determined. By experiment, the effects of cutting speed and tool wear on white layer thickness in damaged layer are revealed. The temperature distribution law of third deformation zone is got by establishing the numerical prediction model, and thickness of white layer in damaged layer is predicted, taking the tool wear effect into consideration. The experimental results show that the model prediction is accurate, and the establishment of prediction model provides a reference for wise selection of parameters in precise hard cutting process. For the machining process with high demanding on surface integrity, the generation of damaged layer on machined surface can be controlled precisely by using the prediction model. 展开更多
关键词 precise hard cutting hardened mould steel hardening effect damaged layer on machined surface tool wear
下载PDF
Fretting Wear Behavior of Medium Carbon Steel Modified by Low Temperature Gas Multi-component Thermo-chemical Treatment 被引量:3
17
作者 LUO Jun ZHENG Jianfeng PENG Jinfang HE Liping ZHU Minhao 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2010年第3期288-296,共9页
The introduction of surface engineering is expected to be an effective strategy against fretting damage. A large number of studies show that the low gas multi-component (such as carbon, nitrogen, sulphur and oxygen, ... The introduction of surface engineering is expected to be an effective strategy against fretting damage. A large number of studies show that the low gas multi-component (such as carbon, nitrogen, sulphur and oxygen, etc) thermo-chemical treatment(LTGMTT) can overcome the brittleness of nitriding process, and upgrade the surface hardness and improve the wear resistance and fatigue properties of the work-pieces significantly. However, there are few reports on the anti-fretting properties of the LTGMTT modified layer up to now, which limits the applications of fretting. So this paper discusses the fretting wear behavior of modified layer on the surface of LZ50 (0.48%C) steel prepared by low temperature gas multi-component thermo-chemical treatment (LTGMTT) technology. The fretting wear tests of the modified layer flat specimens and its substrate (LZ50 steel) against 52100 steel balls with diameter of 40 mm are carried out under normal load of 150 N and displacement amplitudes varied from 2 μm to 40 μm. Characterization of the modified layer and dynamic analyses in combination with microscopic examinations were performed through the means of scanning electron microscope(SEM), optical microscope(OM), X-ray diffraction(XRD) and surface profilometer. The experimental results showed that the modified layer with a total thickness of 60 μm was consisted of three parts, i.e., loose layer, compound layer and diffusion layer. Compared with the substrate, the range of the mixed fretting regime(MFR) of the LTGMTT modified layer diminished, and the slip regime(SR) of the modified layer shifted to the direction of smaller displacement amplitude. The coefficient of friction(COF) of the modified layer was lower than that of the substrate in the initial stage. For the modified layer, the damage in partial slip regime(PSR) was very slight. The fretting wear mechanism of the modified layer both in MFR and SR was abrasive wear and delamination. The modified layer presented better wear resistance than the substrate in PSR and MFR; however, in SR, the wear resistance of the modified layer decreased with the increase of the displacement amplitudes. The experimental results can provide some experimental bases for promoting industrial application of LTGMTT modified layer in anti-fretting wear. 展开更多
关键词 fretting wear fretting regimes low temperature gas multi-component thermo-chemical treatment(LTGMTT) modified layer medium carbon steel
下载PDF
Microstructures and properties of the nitrided layers fabricated on titanium substrate by direct current nitrogen arc melting technique 被引量:2
18
作者 李欣 任振安 +2 位作者 孙大千 王丽 赵运强 《China Welding》 EI CAS 2008年第1期18-22,共5页
The nitrided layers mainly containing TiN dendrites were fabricated by direct current nitrogen arc melting method. The test results show that the layers are harder and more resistant to wear than the titanium substrat... The nitrided layers mainly containing TiN dendrites were fabricated by direct current nitrogen arc melting method. The test results show that the layers are harder and more resistant to wear than the titanium substrate. Arc traveling speeds and arc currents have an effect on both the microstructures and the properties of the layers. Decreasing the arc traveling speed or increasing the arc current can obviously enhance the hardness and the wear resistance of the nitrided layers. 展开更多
关键词 direct current nitrogen arc melting nitrided layer microstructure HARDNESS wear resistance
下载PDF
Formation mechanism of bimetal composite layer between LCS and HCCI 被引量:3
19
作者 Yong-chang Zhu Zun-jie Wei +2 位作者 Shou-fan Rong Hong-wei Wang Chun-ming Zou 《China Foundry》 SCIE 2016年第6期396-401,共6页
A low carbon steel (LCS)/high chromium white cast iron (HCCI) bimetal wear plate about 20 mm in thickness was prepared by liquid-liquid bimetal composite casting technology to substitute for the welding wear plate... A low carbon steel (LCS)/high chromium white cast iron (HCCI) bimetal wear plate about 20 mm in thickness was prepared by liquid-liquid bimetal composite casting technology to substitute for the welding wear plate. A clear and distinguishable composite layer between the LCS and the HCCI was detected with SEM, and the composition and phase were analyzed through EDS and XRD. The composite layer was composed of three sublayers from the LCS to the HCCI: pearlite transition layer, composite layer, and HCCI transition layer. The Vickers hardness from the pearlite transition layer to the HCCl transition layer was 360 HV to 855 HV. The austenite grows as dendrites between the composite layer and the HCCI transition layer under constitutional undercooling. A large amount of C and Cr, and a small amount of Si and Mn dissolve in the matrix. Granular Cr7C3 is uniformly distributed. Due to the solute redistribution at the solid-liquid interface, the primary austenite grows from planar to cellular and finally to the distinct dendrite crystals. The dendrite crystals have an obvious growth direction perpendicular to the composite layer. 展开更多
关键词 liquid-liquid composite casting bimetal wear plate composite layer dendritic austenite
下载PDF
Modifying element diffusion pathway by transition layer structure in high-entropy alloy particle reinforced Cu matrix composites 被引量:2
20
作者 Hao-yang YU Wei FANG +2 位作者 Ruo-bin CHANG Pu-guang JI Qing-zhou WANG 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2019年第11期2331-2339,共9页
The Al0.3CoCrFeNi high-entropy alloy(HEA)particles reinforced Cu matrix composites(CMCs)were fabricated by mechanical alloying and sintering.Transition layer structure was obtained by multi-step ball milling to invest... The Al0.3CoCrFeNi high-entropy alloy(HEA)particles reinforced Cu matrix composites(CMCs)were fabricated by mechanical alloying and sintering.Transition layer structure was obtained by multi-step ball milling to investigate the related influence on element diffusion behavior and wear properties of CMCs.The results indicate that a new Cu transition layer is generated,and the thickness is about 5μm.Cr element diffuses into the interface via the transition layer,which forms the complex oxide.Because of the structure of Cu transition layer,the diffusion rates of Ni,Co and Fe increase,especially the Ni element.The wear resistance of CMCs is improved by 30%,which is due to the improvement of interface bonding strength,compared with the CMCs without transition layer.This method is applicable to the development of advanced HEA reinforced metallic matrix composites. 展开更多
关键词 high-entropy alloy copper-matrix composites transition layer structure diffusion wear
下载PDF
上一页 1 2 52 下一页 到第
使用帮助 返回顶部