期刊文献+
共找到21,664篇文章
< 1 2 250 >
每页显示 20 50 100
Multiphase Interfacial Regulation Based on Hierarchical Porous Molybdenum Selenide to Build Anticorrosive and Multiband Tailorable Absorbers 被引量:4
1
作者 Tianbao Zhao Zirui Jia +3 位作者 Jinkun Liu Yan Zhang Guanglei Wu Pengfei Yin 《Nano-Micro Letters》 SCIE EI CAS CSCD 2024年第1期85-105,共21页
Electromagnetic wave(EMW)absorbing materials have an irreplaceable position in the field of military stealth as well as in the field of electromagnetic pollution control.And in order to cope with the complex electroma... Electromagnetic wave(EMW)absorbing materials have an irreplaceable position in the field of military stealth as well as in the field of electromagnetic pollution control.And in order to cope with the complex electromagnetic environment,the design of multifunctional and multiband high efficiency EMW absorbers remains a tremendous challenge.In this work,we designed a three-dimensional porous structure via the salt melt synthesis strategy to optimize the impedance matching of the absorber.Also,through interfacial engineering,a molybdenum carbide transition layer was introduced between the molybdenum selenide nanoparticles and the three-dimensional porous carbon matrix to improve the absorption behavior of the absorber.The analysis indicates that the number and components of the heterogeneous interfaces have a significant impact on the EMW absorption performance of the absorber due to mechanisms such as interfacial polarization and conduction loss introduced by interfacial engineering.Wherein,the prepared MoSe_(2)/MoC/PNC composites showed excellent EMW absorption performance in C,X,and Ku bands,especially exhibiting a reflection loss of−59.09 dB and an effective absorption bandwidth of 6.96 GHz at 1.9 mm.The coordination between structure and components endows the absorber with strong absorption,broad bandwidth,thin thickness,and multi-frequency absorption characteristics.Remarkably,it can effectively reinforce the marine anticorrosion property of the epoxy resin coating on Q235 steel substrate.This study contributes to a deeper understanding of the relationship between interfacial engineering and the performance of EMW absorbers,and provides a reference for the design of multifunctional,multiband EMW absorption materials. 展开更多
关键词 Interfacial engineering ANTICORROSION MULTIBAND Electromagnetic wave absorber
下载PDF
Vibration Reduction by a Partitioned Dynamic Vibration Absorber with Acoustic Black Hole Features 被引量:1
2
作者 Xiaoning Zhao Chaoyan Wang +2 位作者 Hongli Ji Jinhao Qiu Li Cheng 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2024年第4期120-134,共15页
Vibration quality is a vital indicator for assessing the progress of modern equipment.The dynamic vibration absorber(DVA)based on the acoustic black hole(ABH)feature is a new passive control method that manipulates wa... Vibration quality is a vital indicator for assessing the progress of modern equipment.The dynamic vibration absorber(DVA)based on the acoustic black hole(ABH)feature is a new passive control method that manipulates waves.It offers efficient energy focalization and broad-spectrum vibration suppression,making it highly promising for applications in large equipment such as aircraft,trains,and ships.Despite previous advancements in ABH-DVA development,certain challenges remain,particularly in ensuring effective coupling with host structures during control.To address these issues,this study proposes a partitioned ABH-featured dynamic vibration absorber(PABH-DVA)with partitions in the radial direction of the disc.By employing a plate as the host structure,simulations and experiments were conducted,demonstrating that the PABH-DVA outperforms the original symmetric ABH-DVA in terms of damping performance.The study also calculated and compared the coupling coefficients of the two ABH-DVAs to uncover the mechanism behind the enhanced damping.Simulation results revealed that the PABH-DVA exhibits more coupled modes,occasionally with lower coupling coefficients than the symmetric ABH-DVA.The influence of frequency ratio and modal mass was further analyzed to explain the reasons behind the PABH-DVA's superior damping performance.Additionally,the study discussed the impact of the number of slits and their orientation.This research further explains the coupling mechanism between the ABH-DVA and the controlled structure,and provides new ideas for the further application of ABH in engineering. 展开更多
关键词 Acoustic black hole Vibration control Dynamic vibration absorber Coupling analysis
下载PDF
Study on vibration reduction of two-scale system coupled with dynamic vibration absorber
3
作者 Honglin WAN Xianghong LI Yongjun SHEN 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI CSCD 2024年第8期1335-1352,共18页
The dynamic vibration absorber with inerter and grounded stiffness(IGDVA)is used to control a two-scale system subject to a weak periodic perturbation.The vibration suppression effect is remarkable.The amplitude of th... The dynamic vibration absorber with inerter and grounded stiffness(IGDVA)is used to control a two-scale system subject to a weak periodic perturbation.The vibration suppression effect is remarkable.The amplitude of the main system coupled with absorber is significantly reduced,and the high frequency vibration completely disappears.First,through the slow-fast analysis and stability theory,it is found that the stability of the autonomous system exerts a notable regulating effect on the vibration response of the non-autonomous system.After adding the dynamic vibrator absorber,the center in the autonomous system changes to an asymptotically stable focus,consequently suppressing the vibration in the non-autonomous system.Further research reveals that the parameters of the absorber affect the real parts of the eigenvalues of the autonomous system,thereby regulating the stability of the system.Transitioning from a qualitative standpoint to a quantitative approach,a comparison of the solutions before and after the introduction of the dynamic absorber reveals that,when the grounded stiffness ratio and the mass ratio of the dynamic absorber are not equal,the high-frequency part in the analytical solution disappears.As a result,this leads to a reduction in the amplitude of the trajectory,achieving a vibration reduction effect. 展开更多
关键词 two-scale system dynamic vibration absorber vibration control inerter
下载PDF
Ultra-broadband microwave absorber and high-performance pressure sensor based on aramid nanofiber,polypyrrole and nickel porous aerogel
4
作者 Leyi Zhang Hongyu Jin +7 位作者 Hanxin Liao Rao Zhang Bochong Wang Jianyong Xiang Congpu Mu Kun Zhai Tianyu Xue Fusheng Wen 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2024年第8期1912-1921,共10页
Electronic devices have become ubiquitous in our daily lives,leading to a surge in the use of microwave absorbers and wearable sensor devices across various sectors.A prime example of this trend is the aramid nanofibe... Electronic devices have become ubiquitous in our daily lives,leading to a surge in the use of microwave absorbers and wearable sensor devices across various sectors.A prime example of this trend is the aramid nanofibers/polypyrrole/nickel(APN)aerogels,which serve dual roles as both microwave absorbers and pressure sensors.In this work,we focused on the preparation of aramid nanofibers/polypyrrole(AP15)aerogels,where the mass ratio of aramid nanofibers to pyrrole was 1:5.We employed the oxidative polymerization method for the preparation process.Following this,nickel was thermally evaporated onto the surface of the AP15 aerogels,resulting in the creation of an ultralight(9.35 mg·cm^(-3)).This aerogel exhibited a porous structure.The introduction of nickel into the aerogel aimed to enhance magnetic loss and adjust impedance matching,thereby improving electromagnetic wave absorption performance.The minimum reflection loss value achieved was-48.7 dB,and the maximum effective absorption bandwidth spanned 8.42 GHz with a thickness of 2.9 mm.These impressive metrics can be attributed to the three-dimensional network porous structure of the aerogel and perfect impedance matching.Moreover,the use of aramid nanofibers and a three-dimensional hole structure endowed the APN aerogels with good insulation,flame-retardant properties,and compression resilience.Even under a compression strain of 50%,the aerogel maintained its resilience over 500 cycles.The incorporation of polypyrrole and nickel particles further enhanced the conductivity of the aerogel.Consequently,the final APN aerogel sensor demonstrated high sensitivity(10.78 kPa-1)and thermal stability.In conclusion,the APN aerogels hold significant promise as ultra-broadband microwave absorbers and pressure sensors. 展开更多
关键词 porous aerogel aramid nanofibers microwave absorbers pressure sensor porous structure
下载PDF
Thermal Stability and Degeneration Behavior of Solar Selective Absorber Based on WTi-Al_(2)O_(3)Cermet
5
作者 WANG Xiaobo FANG Wei +2 位作者 MA Yuchao CHENG Xudong LI Kewei 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS CSCD 2024年第6期1555-1564,共10页
A WTi-Al_(2)O_(3)cermet-based solar selective absorber was prepared to investigate the atomic diffusion induced spectral selectivity degeneration.The as-deposited coating exhibits superior absorptance(0.934)and low th... A WTi-Al_(2)O_(3)cermet-based solar selective absorber was prepared to investigate the atomic diffusion induced spectral selectivity degeneration.The as-deposited coating exhibits superior absorptance(0.934)and low thermal emittance(0.098),as well as excellent thermal stability with a selectivity of 0.900/0.07 even after annealing at 923 K for 400 h in Ar ambient.However,the multilayer coating failed after being subjected to annealing at 923 K for 400 h in an air environment,as indicated by a decrease in solar absorptance to 0.912 and an increase in thermal emittance to 0.634.The microstructure characterizations reveal that the annealed coating exhibits a columnar morphology along the vertical direction of the substrate.The presence of abundant grain boundaries in the multilayer coating promotes the outward diffusion of Cr and Mn atoms in the stainless-steel substrate.The Mn atoms,in particular,possess the capability to migrate towards the surface of the coating and undergo an oxidation reaction with oxygen,facilitating the formation of a thick Mn_(2)O_(3)layer.The roughness of the coating surface was significantly increased in this case,adversely affecting solar absorptance due to amplified sunlight reflection.In addition,the rocketing of thermal emittance is attributed to the destabilization of W infrared reflective layer during the annealing.These findings highlight the importance of considering the outward diffusion of Mn and Cr elements in the stainless-steel substrate when optimizing solar selective absorbers. 展开更多
关键词 solar selective absorber thermal stability spectral selectivity optical properties
下载PDF
Study of relationship between motion of mechanisms in gas operated weapon and its shock absorber
6
作者 Jiri Balla Roman Vitek +2 位作者 Dung Nguyen Van Zbynek Krist Hung Nguyen Van 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2024年第3期42-54,共13页
The article deals with the motion of the breech block carrier and the weapon casing of an automatic weapon mounted on a flexible carriage and the base of the weapon.Earlier works,which did not consider the dynamic pro... The article deals with the motion of the breech block carrier and the weapon casing of an automatic weapon mounted on a flexible carriage and the base of the weapon.Earlier works,which did not consider the dynamic properties of the base of the weapon,did not allow to reconcile the calculated and experimental results of the weapon casing displacement when shooting from firing rests.For the analysis of the motion of individual parts,the methods of mathematical modelling and firing experiments using a high-speed camera were chosen.Calculations show the best accord with experiment when modelling the system with 4 degrees of freedom.The oscillation of the system regarding the movement of the breech block carrier and the weapon casing was investigated under changed conditions of rate of fire,the use of a muzzle brake and different types of shock absorbers.The velocities and displacements of the weapon casing and the breech block carrier at different values of the impulse of the gases to the breech block carrier were determined. 展开更多
关键词 Shock absorber Gas-operated weapon Force-impulse diagram Recoil system Breech block carrier
下载PDF
A flexible ultra-broadband multi-layered absorber working at 2 GHz-40 GHz printed by resistive ink
7
作者 汪涛 闫玉伦 +3 位作者 陈巩华 李迎 胡俊 毛剑波 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第2期329-333,共5页
A flexible extra broadband metamaterial absorber(MMA)stacked with five layers working at 2 GHz–40 GHz is investigated.Each layer is composed of polyvinyl chloride(PVC),polyimide(PI),and a frequency selective surface(... A flexible extra broadband metamaterial absorber(MMA)stacked with five layers working at 2 GHz–40 GHz is investigated.Each layer is composed of polyvinyl chloride(PVC),polyimide(PI),and a frequency selective surface(FSS),which is printed on PI using conductive ink.To investigate this absorber,both one-dimensional analogous circuit analysis and three-dimensional full-wave simulation based on a physical model are provided.Various crucial electromagnetic properties,such as absorption,effective impedance,complex permittivity and permeability,electric current distribution and magnetic field distribution at resonant peak points,are studied in detail.Analysis shows that the working frequency of this absorber covers entire S,C,X,Ku,K and Ka bands with a minimum thickness of 0.098λ_(max)(λ_(max) is the maximum wavelength in the absorption band),and the fractional bandwidth(FBW)reaches 181.1%.Moreover,the reflection coefficient is less than-10 dB at 1.998 GHz–40.056 GHz at normal incidence,and the absorptivity of the plane wave is greater than 80%when the incident angle is smaller than 50°.Furthermore,the proposed absorber is experimentally validated,and the experimental results show good agreement with the simulation results,which demonstrates the potential applicability of this absorber at 2 GHz–40 GHz. 展开更多
关键词 extra broadband physical model flexible metamaterial absorber MULTI-LAYER frequency selective surface
下载PDF
Heat Transfer Enhancement of the Absorber Tube in a Parabolic Trough Solar Collector through the Insertion of Novel Cylindrical Turbulators
8
作者 Yasser Jebbar Fadhil Fluiful Wisam Khudhayer 《Fluid Dynamics & Materials Processing》 EI 2024年第6期1279-1297,共19页
This study includes an experimental and numerical analysis of the performances of a parabolic trough collector(PTC)with and without cylindrical turbulators.The PTC is designed with dimensions of 2.00 m in length and 1... This study includes an experimental and numerical analysis of the performances of a parabolic trough collector(PTC)with and without cylindrical turbulators.The PTC is designed with dimensions of 2.00 m in length and 1.00 m in width.The related reflector is made of lined sheets of aluminum,and the tubes are made of stainless steel used for the absorption of heat.They have an outer diameter of 0.051 m and a wall thickness of 0.002 m.Water,used as a heat transfer fluid(HTF),flows through the absorber tube at a mass flow rate of 0.7 kg/s.The dimensions of cylindrical turbulators are 0.04 m in length and 0.047 m in diameter.Simulations are performed using the ANSYS Fluent 2020 R2 software.The PTC performance is evaluated by comparing the experimental and numerical outcomes,namely,the outlet temperature,useful heat,and thermal efficiency for a modified tube(MT)(tube with novel cylindrical turbulators)and a plain tube(PT)(tube without novel cylindrical turbulators).According to the results,the experimental outlet temperatures recorded 63.2°C and 50.5°C for the MT and PT,respectively.The heat gain reaches 1137.5 Win the MT and 685.8 Win the PT.Compared to the PT collector,the PTC exhibited a(1.64 times)higher efficiency. 展开更多
关键词 Parabolic trough collector turbulators absorber tube ANSYS thermal efficiency
下载PDF
Preparation and Swelling Kinetic Analysis of Poly (HPMC-co-AA-co-AM) Super Absorbent Resin
9
作者 马砺 WANG Xin +2 位作者 LIU Xixi WEI Gaoming GUO Ying 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS CSCD 2024年第3期790-799,共10页
Super absorbent resin(SAR)is prepared by aqueous high temperature polymerization using hydroxypropyl methylcellulose(HPMC)as monomer backbone material,acrylic acid(AA)and acrylamide(AM)as the graft copolymer monomer,p... Super absorbent resin(SAR)is prepared by aqueous high temperature polymerization using hydroxypropyl methylcellulose(HPMC)as monomer backbone material,acrylic acid(AA)and acrylamide(AM)as the graft copolymer monomer,potassium persulfate(KPS)as the initiator to generate free radicals,and N,N`-methylenebisacrylamide(MBA)as cross-linking agent for cross-linking reaction.Simutaneously,the influence of individual factors on the water absorption is investigated,and these factors are mainly AA,AM,KPS,MBA,HPMC,and reaction temperature.The optimized conditions are obtained by the experiment repeating for several times.The water absorption multiplicity and salt absorption multiplicity under the conditions are 782.4 and 132.5 g/g,respectivity.Furthermore,the effects of different temperatures and salt concentrations on its water absorption,as well as the swelling kinetics of SAR are studied.It is indicated the water-absorbing swelling process is mainly caused by the difference in water osmotic pressure and Na+concentration inside and outside the cross-linked molecular structure of the resin,which is not only consistent with the quasi-secondary kinetic model,but also with the Fick diffusion model. 展开更多
关键词 super absorbent resin swelling kinetics water absorption graft copolymerization hydroxypropyl methyl cellulose
下载PDF
An electromagnetic semi-active dynamic vibration absorber for thin-walled workpiece vibration suppression in mirror milling
10
作者 Jianghua KONG Bei DING +3 位作者 Wei WANG Zhixia WANG Juliang XIAO Hongyun QIU 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI CSCD 2024年第8期1315-1334,共20页
As critical components of aircraft skins and rocket fuel storage tank shells,large thin-walled workpieces are susceptible to vibration and deformation during machining due to their weak local stiffness.To address thes... As critical components of aircraft skins and rocket fuel storage tank shells,large thin-walled workpieces are susceptible to vibration and deformation during machining due to their weak local stiffness.To address these challenges,we propose a novel tunable electromagnetic semi-active dynamic vibration absorber(ESADVA),which integrates with a magnetic suction follower to form a followed ESADVA(follow-ESADVA)for mirror milling.This system combines a tunable magnet oscillator with a follower,enabling real-time vibration absorption and condition feedback throughout the milling process.Additionally,the device supports self-sensing and frequency adjustment by providing feedback to a linear actuator,which alters the distance between magnets.This resolves the traditional issue of being unable to directly monitor vibration at the machining point due to space constraints and tool interference.The frequency shift characteristics and vibration absorption performance are comprehensively investigated.Theoretical and experimental results demonstrate that the prototyped follow-ESADVA achieves frequency synchronization with the milling tool,resulting in a vibration suppression rate of approximately 47.57%.Moreover,the roughness of the machined surface decreases by18.95%,significantly enhancing the surface quality.The results of this work pave the way for higher-quality machined surfaces and a more stable mirror milling process. 展开更多
关键词 semi-active dynamic vibration absorber(SADVA) mirror milling selfsensing vibration absorption tuning thin-walled workpiece
下载PDF
Biomechanical analysis of an absorbable material for treating fractures of the inferior orbital wall
11
作者 Jin-Hai Yu Ze-Xi Sang +4 位作者 Huang Zhang Qi-Hua Xu Qin Huang Hong-Fei Liao Yao-Hua Wang 《International Journal of Ophthalmology(English edition)》 SCIE CAS 2024年第7期1331-1336,共6页
AIM:To investigate the biomechanical properties and practical application of absorbable materials in orbital fracture repair.METHODS:The three-dimensional(3D)model of orbital blowout fractures was reconstructed using ... AIM:To investigate the biomechanical properties and practical application of absorbable materials in orbital fracture repair.METHODS:The three-dimensional(3D)model of orbital blowout fractures was reconstructed using Mimics21.0 software.The repair guide plate model for inferior orbital wall fracture was designed using 3-matic13.0 and Geomagic wrap 21.0 software.The finite element model of orbital blowout fracture and absorbable repair plate was established using 3-matic13.0 and ANSYS Workbench 21.0 software.The mechanical response of absorbable plates,with thicknesses of 0.6 and 1.2 mm,was modeled after their placement in the orbit.Two patients with inferior orbital wall fractures volunteered to receive single-layer and double-layer absorbable plates combined with 3D printing technology to facilitate surgical treatment of orbital wall fractures.RESULTS:The finite element models of orbital blowout fracture and absorbable plate were successfully established.Finite element analysis(FEA)showed that when the Young’s modulus of the absorbable plate decreases to 3.15 MPa,the repair material with a thickness of 0.6 mm was influenced by the gravitational forces of the orbital contents,resulting in a maximum total deformation of approximately 3.3 mm.Conversely,when the absorbable plate was 1.2 mm thick,the overall maximum total deformation was around 0.4 mm.The half-year follow-up results of the clinical cases confirmed that the absorbable plate with a thickness of 1.2 mm had smaller maximum total deformation and better clinical efficacy.CONCLUSION:The biomechanical analysis observations in this study are largely consistent with the clinical situation.The use of double-layer absorbable plates in conjunction with 3D printing technology is recommended to support surgical treatment of infraorbital wall blowout fractures. 展开更多
关键词 orbital blowout fracture absorbable material finite element analysis 3D printing technology
下载PDF
Evaluation of Air-Kerma and Absorbed Dose to Water for External Radiotherapy Beam Using Ionization Chamber
12
作者 Collins Omondi Margaret Chege Samson Omondi 《Open Journal of Radiology》 2024年第3期113-124,共12页
Radiotherapy is the most widely applied oncologic treatment modality utilizing ionizing radiation. A high degree of accuracy, reliability and reproducibility is required for a successful treatment outcome. Measurement... Radiotherapy is the most widely applied oncologic treatment modality utilizing ionizing radiation. A high degree of accuracy, reliability and reproducibility is required for a successful treatment outcome. Measurement using ionization chamber is a prerequisite for absorbed dose determination for external beam radiotherapy. Calibration coefficient is expressed in terms of air kerma and absorbed dose to water traceable to Secondary Standards Dosimetry Laboratory. The objective of this work was to evaluate the level of accuracy of ionization chamber used for clinical radiotherapy beam determination. Measurement and accuracy determination were carried out according to IAEA TRS 398 protocol. Clinical farmers type ionization chamber measurement and National Reference standard from Secondary Standards Dosimetry Laboratory were both exposed to cobalt-60 beam and measurement results compared under the same environmental conditions. The accuracy level between National Reference Standard and clinical radiotherapy standard was found to be −1.92% and −2.02% for air kerma and absorbed dose to water respectively. To minimize the effect of error and maximize therapeutic dose during treatment in order to achieve required clinical outcome, calibration factor was determined for air kerma (Nk) as 49.7 mGy/nC and absorbed dose to water ND, as 52.9 mGy/nC. The study established that radiotherapy beam measurement chain is prone to errors. Hence there is a need to independently verify the accuracy of radiation dose to ensure precision of dose delivery. The errors must be accounted for during clinical planning by factoring in calibration factor to minimize the systematic errors during treatment, and thereby providing enough room to achieve ±5% dose delivery to tumor target as recommended by ICRU. 展开更多
关键词 absorbed Dose to Water Air Kerma Co-60 Source Calibration SSDL Radiotherapy Beam METROLOGY Accuracy and Accuracy
下载PDF
A low-profile metamaterial absorber with ultrawideband reflectionless and wide-angular stability
13
作者 Feihong Lin Zhongming Yan +3 位作者 Ping Wang Yu Wang Hongcheng Zhou Haoran Lu 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2024年第4期258-268,共11页
An ultrawideband reflectionless metamaterial absorber(MA)is proposed by replacing the metallic ground with the complementary split-ring resonator(CSRR)structure.The proposed MA exhibits-10 d B reflectivity spectrum fr... An ultrawideband reflectionless metamaterial absorber(MA)is proposed by replacing the metallic ground with the complementary split-ring resonator(CSRR)structure.The proposed MA exhibits-10 d B reflectivity spectrum from 1 GHz to 20 GHz,which maintains more than 90%absorption from 1.5 GHz to20 GHz.Furthermore,it achieves angle stability for TE and TM polarization at oblique incident angles up to 40°and 65°,respectively.To achieve broadband absorption spectrum,we have adopted a single-layer high-impedance surface(HIS)loaded with a double-layer magnetic material(MM)structure.To further realize the RCS reduction into a lower frequency range,we have employed the scattering cancellation technology into the traditional metallic ground.Finally,we have fabricated a sample exhibiting the 10 d B RCS reduction from 1 GHz to 20 GHz with a thickness of 10 mm.Measurement and simulation results confirm that the proposed MA exhibits excellent comprehensive performance,making it suitable for many practical applications. 展开更多
关键词 Metamaterial absorber(MA) Magnetic material(MM) High-impedance surface(HIS) Scattering cancellation technology ULTRAWIDEBAND Wide-angular stable
下载PDF
A low-frequency pure metal metamaterial absorber with continuously tunable stiffness
14
作者 Xingzhong WANG Shiteng RUI +2 位作者 Shaokun YANG Weiquan ZHANG Fuyin MA 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI CSCD 2024年第7期1209-1224,共16页
To address the incompatibility between high environmental adaptability and deep subwavelength characteristics in conventional local resonance metamaterials,and overcome the deficiencies in the stability of existing ac... To address the incompatibility between high environmental adaptability and deep subwavelength characteristics in conventional local resonance metamaterials,and overcome the deficiencies in the stability of existing active control techniques for band gaps,this paper proposes a design method of pure metal vibration damping metamaterial with continuously tunable stiffness for wideband elastic wave absorption.We design a dual-helix narrow-slit pure metal metamaterial unit,which possesses the triple advantage of high spatial compactness,low stiffness characteristics,and high structural stability,enabling the opening of elastic flexural band gaps in the low-frequency range.Similar to the principle of a sliding rheostat,the introduction of continuously sliding plug-ins into the helical slits enables the continuous variation of the stiffness of the metamaterial unit,achieving a continuously tunable band gap effect.This successfully extends the effective band gap by more than ten times.The experimental results indicate that this metamaterial unit can be used as an additional vibration absorber to absorb the low-frequency vibration energy effectively.Furthermore,it advances the metamaterial absorbers from a purely passive narrowband design to a wideband tunable one.The pure metal double-helix metamaterials retain the subwavelength properties of metamaterials and are suitable for deployment in harsh environments.Simultaneously,by adjusting its stiffness,it substantially broadens the effective band gap range,presenting promising potential applications in various mechanical equipment operating under adverse conditions. 展开更多
关键词 elastic metamaterial absorber continuously tunable stiffness low-frequency vibration damping variable stiffness design pure metal structure
下载PDF
Research on the Damping Mechanism of Time-Delay Coupled Negative Stiffness Dynamic Absorber in Nonlinear Vibration Damping System
15
作者 Weikai Wang Yanying Zhao +2 位作者 Qiqi Li Hao Wu Liuqing Yang 《Open Journal of Applied Sciences》 2024年第4期818-832,共15页
A study was conducted on the effect of time delay and structural parameters on the vibration reduction of a time delayed coupled negative stiffness dynamic absorber in nonlinear vibration reduction systems. Taking dyn... A study was conducted on the effect of time delay and structural parameters on the vibration reduction of a time delayed coupled negative stiffness dynamic absorber in nonlinear vibration reduction systems. Taking dynamic absorbers with different structural and control parameters as examples, the effects of third-order nonlinear coefficients, time-delay control parameters, and negative stiffness coefficients on reducing the replication of the main system were discussed. The nonlinear dynamic absorber has a very good vibration reduction effect at the resonance point of the main system and a nearby area, and when 1 increases to a certain level, the stable region of the system continues to increase. The amplitude curve of the main system of a nonlinear dynamic absorber will generate Hop bifurcation and saddle node bifurcation in the region far from the resonance point, resulting in almost periodic motion and jumping phenomena in the system. For nonlinear dynamic absorbers with determined structural parameters, time-delay feedback control can be adopted to control the amplitude of the main system. For different negative stiffness coefficients, there exists a minimum damping point for the amplitude of the main system under the determined system structural parameters and time-delay feedback control parameters. 展开更多
关键词 Time Delay NONLINEAR Dynamic Vibration absorber
下载PDF
Absorbing Boundary Conditions for Simulating Water Waves Near Solid Bodies
16
作者 José Marie Orellana 《Journal of Applied Mathematics and Physics》 2024年第10期3502-3520,共19页
The objective of this paper is to present a new method for designing absorbing or non-reflective boundary conditions (ABC) or (NRBC), illustrated by the case study of the modelling of a solid body in water, specifical... The objective of this paper is to present a new method for designing absorbing or non-reflective boundary conditions (ABC) or (NRBC), illustrated by the case study of the modelling of a solid body in water, specifically the capillary gravity waves generated by its motion at the surface. The study analyses the flow of an inviscid, barotropic, and compressible fluid around the stationary solid body. The dynamic behaviour of the fluid is analysed using a two-dimensional coupled Neumann-Kelvin model extended with capillarity and inertia terms. For computational purposes, it is necessary to truncate the unbounded spatial domain with artificial boundaries and then introduce appropriate absorbing boundary conditions. The propagation of short wavelength waves in a convective fluid medium with significant differences in properties between the interior and the surface of the fluid presents a number of difficulties in the design of these conditions. The results are illustrated numerically and commented upon. 展开更多
关键词 absorbing Boundary Condition Fluid-Structure Interaction Capillary-Gravity Waves Numerical Simulations
下载PDF
The effect of membrane pores wettability on CO_2 removal from CO_2/CH_4 gaseous mixture using NaOH, MEA and TEA liquid absorbents in hollow fiber membrane contactor 被引量:5
17
作者 Ali Taghvaie Nakhjiri Amir Heydarinasab +1 位作者 Omid Bakhtiari Toraj Mohammadi 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2018年第9期1845-1861,共17页
The present paper renders a modeling and a 2D numerical simulation for the removal of CO_2from CO_2/CH_4gaseous stream utilizing sodium hydroxide(NaOH),monoethanolamine(MEA)and triethanolamine(TEA)liquid absorbents in... The present paper renders a modeling and a 2D numerical simulation for the removal of CO_2from CO_2/CH_4gaseous stream utilizing sodium hydroxide(NaOH),monoethanolamine(MEA)and triethanolamine(TEA)liquid absorbents inside the hollow fiber membrane contactor.Counter-current arrangement of absorbing agents and CO_2/CH_4gaseous mixture flows are implemented in the modeling and numerical simulation.Non-wetting and partial wetting modes of operation are considered where in the partial wetting mode,CO_2/CH_4gaseous mixture and liquid absorbents fill the membrane pores.The deteriorated removal of CO_2in the partial wetting mode of operation is mainly due to the mass transfer resistance imposed by the liquid in the pores of membrane.The validation of numerical simulation is done based on the comparison of simulation results of CO_2removal using Na OH and experimental data under non-wetting mode of operation.The comparison illustrates a desirable agreement with an average deviation of less than 5%.According to the results,MEA provides higher efficiency for CO_2removal in comparison with the other liquid absorbents.The order for CO_2removal performance is MEAN Na OHN TEA.The influence of non-wetting and partial wetting modes of operation on CO_2removal are evaluated in this article as one of the novelties.Besides,the percentage of CO_2sequestration as a function of gas velocity for various percentages of membrane pores wetting ranging from 0(non-wetting mode of operation)to 100%(complete wetting mode of operation)is studied in this research paper,which can be proposed as the other novelty.The results indicate that increase in some operational parameters such as module length,membrane porosity and absorbents concentration encourage the removal percentage of CO_2from CO_2/CH_4gaseous mixture while increasing in membrane tortuosity,gas velocity and initial CO_2concentration has unfavorable influence on the separation efficiency of CO_2. 展开更多
关键词 CO2 removal Membrane wettability Numerical simulation CO2/CH4 gaseous mixture NAOH MEA and TEA liquid absorbents
下载PDF
Maximizing Terahertz Energy Absorption with MXene Absorber 被引量:2
18
作者 Xinliang Li Hao Luo 《Nano-Micro Letters》 SCIE EI CAS CSCD 2023年第11期136-139,共4页
Achieving high absorption in broad terahertz bands has long been challenging for terahertz electromagnetic wave absorbers.Recently in Nature Photonics,Xiao et al.reported the high absorption approaching the theoretica... Achieving high absorption in broad terahertz bands has long been challenging for terahertz electromagnetic wave absorbers.Recently in Nature Photonics,Xiao et al.reported the high absorption approaching the theoretical upper limit across the whole terahertz band of MXene-based terahertz absorbers and,on this basis,constructed an applicable,updated alternating current impedance matching model. 展开更多
关键词 Terahertz absorption MXene absorber Impedance matching Electron concentration Relaxation time
下载PDF
Influence of Reaction Parameters on Water Absorbency of Starch Grafted Superabsorbents
19
作者 李明达 周永元 《Journal of Donghua University(English Edition)》 EI CAS 2002年第2期91-94,共4页
Superabsorbents starch grafted sodium polyacrylate was synthesized by inverse suspension polymerization, using toluene as the continuous phase, potassium persulfate as the initiator. The effect of reaction parameters,... Superabsorbents starch grafted sodium polyacrylate was synthesized by inverse suspension polymerization, using toluene as the continuous phase, potassium persulfate as the initiator. The effect of reaction parameters, such as starch pretreatment temperature, neutralization degree of monomer, reaction time and temperature, concentration of initiator, molar ratio of monomer and starch, on water absorbency of the starch grafted polymer was studied. The effects of the last two parameters were investigated by uniform design method, and the prediction equation was obtained. 展开更多
关键词 STARCH grafted sodium polyacrylate SUPERabsorbENT polymer water absorbency UNIFORM design method
下载PDF
Editorial for special issue on electromagnetic wave absorbing materials 被引量:1
20
作者 Guanglei Wu Hongjing Wu Zirui Jia 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2023年第3期401-404,共4页
With the rapid development of information technology and electronics industry,stealth warplanes,radar stealth,electronic countermeasures,microwave communications,and other equipment have played an increasingly importa... With the rapid development of information technology and electronics industry,stealth warplanes,radar stealth,electronic countermeasures,microwave communications,and other equipment have played an increasingly important role in military defense.Therefore,the design and development of new electromagnetic wave(EMW)absorbing materials with high performance and environmental applicability that can be widely used in the microwave field has become a key issue and a major strategic challenge that needs to be urgently addressed in the modernization and upgrading of major advanced military equipment.However,how to effectively address the growing electromagnetic pollution has been an important issue that has plagued researchers in the field of EMW absorption for many years. 展开更多
关键词 absorbing MICROWAVE WAVE
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部