The ultrafine silver powders were prepared by liquid reduction method using Arabic gum as dispersant.The effects of different dispersants,pH values,and temperature on the morphology and particle size of silver powders...The ultrafine silver powders were prepared by liquid reduction method using Arabic gum as dispersant.The effects of different dispersants,pH values,and temperature on the morphology and particle size of silver powders were investigated.It is found that Arabic gum can better adsorb on silver particles via chemical adsorption,and it shows the best dispersive effect among all the selected dispersants.The particle size of silver powders can be finely tuned from 0.34 to 4.09μm by adjusting pH values,while the morphology of silver powders can be tuned by changing the temperature.The silver powders with high tap density higher than 4.0 g/cm3 were successfully prepared in a wide temperature range of 21.8-70°C.Especially,the tap density is higher than 5.0 g/cm3 when the temperature is optimized to be 50°C.The facile process and high silver concentration of this method make it a promising way to prepare high quality silver powders for electronic paste.展开更多
The spherical silver mirco/nano-particles with narrow size distributions were obtained by chemical reduction of silver ammonia solution with ascorbic acid as reducing agent and bovine serum albumin (BSA) as bio-templa...The spherical silver mirco/nano-particles with narrow size distributions were obtained by chemical reduction of silver ammonia solution with ascorbic acid as reducing agent and bovine serum albumin (BSA) as bio-template. The effects of the concentration of Ag+ ions, BSA and ammonia, reactive temperature on the silver morphology and particle sizes were investigated. SEM, TEM and XRD were employed to characterize the morphology and structures of the prepared silver mirco/nano-particles. The results show that the spherical silver particle with smooth surface and narrow size distributions can be obtained by controlling the concentration of Ag+ ions, BSA, reaction temperature, etc. By controlling the above parameters, the silver spherical mirco/nano-particles with particle sizes ranging from 0.2 to 2.3 m can be well prepared, which is expected to be used in manufacturing high performance electronic pastes.展开更多
基金Project(2014DFA90520)supported by the International Cooperation Program of Ministry of Science and Technology of ChinaProject(2013A090100003)supported by the Production,Teaching and Research Program of Guangdong Province,ChinaProject(2013DY048)supported by the Science and Technology Cooperation Program of Daye Nonferrous Metals Group,China
文摘The ultrafine silver powders were prepared by liquid reduction method using Arabic gum as dispersant.The effects of different dispersants,pH values,and temperature on the morphology and particle size of silver powders were investigated.It is found that Arabic gum can better adsorb on silver particles via chemical adsorption,and it shows the best dispersive effect among all the selected dispersants.The particle size of silver powders can be finely tuned from 0.34 to 4.09μm by adjusting pH values,while the morphology of silver powders can be tuned by changing the temperature.The silver powders with high tap density higher than 4.0 g/cm3 were successfully prepared in a wide temperature range of 21.8-70°C.Especially,the tap density is higher than 5.0 g/cm3 when the temperature is optimized to be 50°C.The facile process and high silver concentration of this method make it a promising way to prepare high quality silver powders for electronic paste.
基金supported by the National Natural Science Foundation of China (Grant No. 51271135) "New Century Talents Project" of Ministry of Education and Fundamental Research funding of Xi'an Jiaotong Universitythe project of Innovative Team of Shaanxi Province (Grant No. 2013KCT-05)
文摘The spherical silver mirco/nano-particles with narrow size distributions were obtained by chemical reduction of silver ammonia solution with ascorbic acid as reducing agent and bovine serum albumin (BSA) as bio-template. The effects of the concentration of Ag+ ions, BSA and ammonia, reactive temperature on the silver morphology and particle sizes were investigated. SEM, TEM and XRD were employed to characterize the morphology and structures of the prepared silver mirco/nano-particles. The results show that the spherical silver particle with smooth surface and narrow size distributions can be obtained by controlling the concentration of Ag+ ions, BSA, reaction temperature, etc. By controlling the above parameters, the silver spherical mirco/nano-particles with particle sizes ranging from 0.2 to 2.3 m can be well prepared, which is expected to be used in manufacturing high performance electronic pastes.