期刊文献+
共找到5篇文章
< 1 >
每页显示 20 50 100
Chatter stability and precision during high-speed ultrasonic vibration cutting of a thin-walled titanium cylinder 被引量:11
1
作者 Zhenlong PENG Deyuan ZHANG Xiangyu ZHANG 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2020年第12期3535-3549,共15页
Titanium alloys are widely used in the aviation and aerospace industries due to their unique mechanical and physical properties.Specifically,thin-walled titanium(Ti)cylinders have received increasing attention for the... Titanium alloys are widely used in the aviation and aerospace industries due to their unique mechanical and physical properties.Specifically,thin-walled titanium(Ti)cylinders have received increasing attention for their applications as rocket engine casings,aircraft landing gear,and aero-engine hollow shaft due to their observed improvement in the thrust-to-weight ratio.However,the conventional cutting(CC)process is not appropriate for thin-walled Ti cylinders due to its low thermal conductivity,high strength,and low stiffness.Instead,high-speed ultrasonic vibration cutting(HUVC)assisted processing has recently proved highly effective for Ti-alloy machining.In this study,HUVC technology is employed to perform external turning of a thinwalled Ti cylinder,which represents a new application of HUVC.First,the kinematics,tool path,and dynamic cutting thickness of HUVC are evaluated.Second,the phenomenon of mode-coupling chatter is analyzed to determine the effects and mechanism of HUVC by establishing a critical cutting thickness model.HUVC can increase the critical cutting thickness and effectively reduce the average cutting force,thus reducing the energy intake of the system.Finally,comparison experiments are conducted between HUVC and CC processes.The results indicate that the diameter error rate is 10%or less for HUVC and 51%for the CC method due to a 40%reduction in the cutting force.In addition,higher machining precision and better surface roughness are achieved during thin-walled Ti cylinder manufacturing using HUVC. 展开更多
关键词 High-speed machining Minimum chip thickness Mode-coupling Thin-walled cylinder ultrasonic vibration cutting
原文传递
Key machining characteristics in ultrasonic vibration cutting of single crystal silicon for micro grooves
2
作者 Jun-Yun Chen Tian-Ye Jin Xi-Chun Luo 《Advances in Manufacturing》 SCIE CAS CSCD 2019年第3期303-314,共12页
Structured complex silicon components have been widely used in solar cells,biomedical engineering and other industrial applications.As silicon is a typical brittle material,ultrasonic vibration cutting(UVC)is a promis... Structured complex silicon components have been widely used in solar cells,biomedical engineering and other industrial applications.As silicon is a typical brittle material,ultrasonic vibration cutting(UVC)is a promising method to achieve better cutting performance than conventional techniques.High-frequency ID UVC possesses higher nominal cutting speed and material removal rate than many 2D/3D UVC systems,and thus,it has great development potential in industrial applications of structured silicon components.However,few researchers have applied ID UVC to the cutting of structured silicon surfaces,since its main drawback is tool marks imprinted by the vibration on machined surface.In this study,to uncover the key machining characteristics under the condition of ID UVC,a series of tests involving diamond cutting grooves were first performed on the silicon surface.The machined surface and chips were subsequently measured and analyzed to evaluate the critical undeformed chip thickness,surface characteristics,and chip formation.Regarding the main drawback of ID UVC,a novel theoretical model was developed for predicting the length of tool marks and evaluating the impact of tool marks on the surface finish.The results demonstrated that the critical undeformed chip thickness of silicon reached 1030 nm under a certain vibration amplitude and that an array of micro grooves was generated at the plastic region with a surface roughness(7?a)as low as 1.11 nm.Moreover,the micro topography of the continuous chips exhibited discontinuous clusters of lines with diameters of dozens of nanometers,only composed of polysilicon.The novel theoretical model was able to predict the length of tool marks with low error.Thus,the impact of tool marks on the surface finish can be reduced and even eliminated with help of the model. 展开更多
关键词 ultrasonic vibration cutting(UVC) Single crystal SILICON Micro groove CHIP Tool vibration mark
原文传递
Research on Vibration Cutting Performance of Particle Reinforced Metallic Matrix Composites SiC_p/Al 被引量:1
3
作者 ZHAO Bo 1,2, LIU Chuan-shao 2, ZHU Xun-sheng 1, XU Ke-wei 1 (1. Institute of Mechanical Engineering, Shanghai Jiaotong U niversity, Shanghai 200030, China 2. Department of Mechanical Engineering, Jiaozuo Institute of Technology, Hena n 454000, China) 《厦门大学学报(自然科学版)》 CAS CSCD 北大核心 2002年第S1期70-71,共2页
The cutting performance of particle reinforced meta ll ic matrix composites (PRMMCs) SiC p/Al in ultrasonic vibration cutting and comm on cutting with carbide tools and PCD tools was experimentally researched in the p... The cutting performance of particle reinforced meta ll ic matrix composites (PRMMCs) SiC p/Al in ultrasonic vibration cutting and comm on cutting with carbide tools and PCD tools was experimentally researched in the paper. The changing rules of chip shape, deformation coefficient, shear angle a nd surface residual stress were presented by ultrasonic vibration cutting. Resul ts show: when adopting common cutting, spiral chip with smaller curl radius will be obtained. The chip with zigzag contour is short and thick. There are lots of sheet cracking both on the face of the chip and on the machined surface. That i s to say, the cutting process of metallic matrix composites(MMCs) is not all lik e the cutting process of plastic material. It is akin to the breaking process of brittle material. By comparison, when adopting ultrasonic cutting, because tool contacts with workpiece intermittently in high frequency, deformation of chip i s small, loose spiral chip with larger curl radius is long and thin. The phenome non is just similar to vibration cutting of plastic material. But the chip still belongs to plastic or semi-plastic segmental chip due to the structure charact eristics of the material itself. Furthermore, the tangential residual compressio n stress of vibration cutting is larger than that of common cutting, axial resid ual stress has a relation to the feed rate and residual stress does not changes obviously with cutting depth and they are in the same order of magnitude on the whole. According to the test result analyzing, the following conclusions are put forward: 1) The extruding deformation is serious in common cutting PRMMCs, defo rmation of it’s chip is larger, and the chip with lesser curl radius is short. Whereas, the deformation of chip in vibration cutting PRMMCs is lesser, the curl radius is bigger, and the loose chips are obtained at every turn. 2) The cuttin g deformation coefficient of chip in vibration cutting is lesser than that in co mmon cutting, however the shear angle is bigger. 3) The tangential residual compression stress of vibration cutting is larger than that of common cutting, a nd residual stress does not change obviously with cutting depth, they are in the same order of magnitude on the whole. 展开更多
关键词 PRMMCs ultrasonic vibration cutting chip deform ation chip shape
下载PDF
Design of ultrasonic elliptical vibration cutting system for tungsten heavy alloy 被引量:1
4
作者 Sen YIN Yan BAO +3 位作者 Yanan PAN Zhigang DONG Zhuji JIN Renke KANG 《Frontiers of Mechanical Engineering》 SCIE CSCD 2022年第4期163-180,共18页
Nanoscale surface roughness of tungsten heavy alloy components is required in the nuclear industry and precision instruments.In this study,a high-performance ultrasonic elliptical vibration cutting(UEVC)system is deve... Nanoscale surface roughness of tungsten heavy alloy components is required in the nuclear industry and precision instruments.In this study,a high-performance ultrasonic elliptical vibration cutting(UEVC)system is developed to solve the precision machining problem of tungsten heavy alloy.A new design method of stepped bending vibration horn based on Timoshenko’s theory is first proposed,and its design process is greatly simplified.The arrangement and working principle of piezoelectric transducers on the ultrasonic vibrator using the fifth resonant mode of bending are analyzed to realize the dual-bending vibration modes.A cutting tool is installed at the end of the ultrasonic vibration unit to output the ultrasonic elliptical vibration locus,which is verified by finite element method.The vibration unit can display different three-degree-of-freedom(3-DOF)UEVC characteristics by adjusting the corresponding position of the unit and workpiece.A dual-channel ultrasonic power supply is developed to excite the ultrasonic vibration unit,which makes the UEVC system present the resonant frequency of 41 kHz and the maximum amplitude of 14.2μm.Different microtopography and surface roughness are obtained by the cutting experiments of tungsten heavy alloy hemispherical workpiece with the UEVC system,which validates the proposed design’s technical capability and provides optimization basis for further improving the machining quality of the curved surface components of tungsten heavy alloy. 展开更多
关键词 tungsten heavy alloy ultrasonic elliptical vibration cutting Timoshenko’s theory resonant mode of bending finite element method
原文传递
Experimental Investigation and Numerical Simulation on Interfacial Carbon Diffusion of Diamond Tool and Ferrous Metals 被引量:3
5
作者 邹莱 ZHOU Ming 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2016年第2期307-314,共8页
We numerically simulated and experimentally studied the interfacialcarbon diffusion between diamond tooland workpiece materials.A diffusion modelwith respect to carbon atoms of diamond toolpenetrating into chips and m... We numerically simulated and experimentally studied the interfacialcarbon diffusion between diamond tooland workpiece materials.A diffusion modelwith respect to carbon atoms of diamond toolpenetrating into chips and machined surface was established.The numericalsimulation results of the diffusion process revealthat the distribution laws of carbon atoms concentration have a close relationship with the diffusion distance,the diffusion time,and the originalcarbon concentration of the work material.In addition,diamond face cutting tests of die steels with different carbon content are conducted at different depth of cuts and feed rates to verify the previous simulation results.The micro-morphology of the chips is detected by scanning electron microscopy.Energy dispersive X-ray analysis was proposed to investigate the change in carbon content of the chips surface.The experimentalresults of this work are of benefit to a better understanding on the diffusion wear mechanism in single crystaldiamond cutting of ferrous metals.Moreover,the experimentalresults show that the diffusion wear of diamond could be reduced markedly by applying ultrasonic vibration to the cutting toolcompared with conventionalturning. 展开更多
关键词 diamond tool carbon diffusion numerical simulations ferrous metals ultrasonic vibration assisted cutting
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部