We investigate the three-dimensional (3D) scattering problem of an incident plane shear horizontal wave by a partly through-thickness hole in an isotropic plate, in which the Lamb wave modes are also included due to...We investigate the three-dimensional (3D) scattering problem of an incident plane shear horizontal wave by a partly through-thickness hole in an isotropic plate, in which the Lamb wave modes are also included due to the mode conversions by the scattering obstacle in the 3D problem. An analytical model is presented such that the wave fields are expanded in all of propagating and evanescent SH modes and Lamb modes, and the scattered far-fields of three fundamental guided wave modes are analyzed numerically for different sizes of the holes and frequencies. The numerical results are verified by comparing with those obtained by using the approximate Poisson/Mindlin plate model for small hole radius and low frequency. It is also found that the scattering patterns are different from those of the SO wave incidence. Our work is useful for quantitative evaluation of the plate-like structure by ultrasonic guided waves.展开更多
The dispersion behavior of the shear horizontal (SH) waves in the coupled structure consisting of a piezomagnetic substrate and an orthorhombic piezoelectric layer is investigated with different cut orientations. Th...The dispersion behavior of the shear horizontal (SH) waves in the coupled structure consisting of a piezomagnetic substrate and an orthorhombic piezoelectric layer is investigated with different cut orientations. The surface of the piezoelectric layer is mechanically free, electrically shorted, or open, while the surface of the piezomagnetic substrate is mechanically free, magnetically open, or shorted. The dispersion relations are derived for four electromagnetic boundary conditions. The dispersion characteristics are graphically illustrated for the layered structure with the PMN-PT layer perfectly bonded on the CoFe2O4 substrate. The effects of the PMN-PT cut orientations, the electromagnetic boundary conditions, and the thickness ratio of the layer to the substrate on the dispersion behavior are analyzed and discussed in detail. The results show that, (i) the effect of the cut orientation on the dispersion curves is very obvious, (ii) the electrical boundary conditions of the PMN-PT layer dominate the propagation feature of the SH waves, and (iii) the thickness ratio has a significant effect on the phase velocity when the wave number is small. The results of the present paper can provide valuable theoretical references to the applications of piezoelectric/piezomagnectic structure in acoustic wave devices.展开更多
The present study deals with the propagation of a polarized shear horizontal(SH)wave in a pre-stressed piezoelectric cylinder circumscribed by a self-reinforced cylinder.The interface of the two media is assumed mecha...The present study deals with the propagation of a polarized shear horizontal(SH)wave in a pre-stressed piezoelectric cylinder circumscribed by a self-reinforced cylinder.The interface of the two media is assumed mechanically imperfect.For obtaining the dispersion relation,the mathematical formulation has been developed and solved by an analytical treatment.The effects of various parameters,i.e.,the thickness ratio,the imperfect interface,the initial stress,the reinforcement,and the piezoelectric and dielectric constants,on the dispersion curve are observed prominently.The dispersion curves for different modes have been also plotted.The consequences of the study may be used for achieving optimum efficiency of acoustic wave devices.展开更多
超声水平剪切(Shear horizontal,SH)导波在工业在役板材成像检测和结构健康监测(Structural health monitoring,SHM)中有重要的应用价值。基于合成孔径聚焦方法,对钢板中人工缺陷用超声SH导波进行成像,对边界散射条件下的成像检测阵列...超声水平剪切(Shear horizontal,SH)导波在工业在役板材成像检测和结构健康监测(Structural health monitoring,SHM)中有重要的应用价值。基于合成孔径聚焦方法,对钢板中人工缺陷用超声SH导波进行成像,对边界散射条件下的成像检测阵列信号进行分析,探讨了边界散射对超声SH导波成像检测的影响。研究结果表明,基于合成孔径聚焦的超声SH导波成像方法用于板材缺陷成像检测时,超声边界散射使成像信号'双曲线'阵列特征弱化,缺陷声波信号衰减增大,信号散射噪声增强,进而使成像清晰度降低,易导致漏检;同时边界散射会造成同一缺陷信号产生'双峰'或'多峰',成像信号'双曲线'阵列特征紊乱,使成像发生畸变,会导致误检。这将为进一步改进工业在役大尺度板材超声导波成像质量与提高结构健康监测水平提供重要基础。展开更多
基金Supported by the National Natural Science Foundation of China under Grant Nos 11474195,11274226,51478258 and 51405287
文摘We investigate the three-dimensional (3D) scattering problem of an incident plane shear horizontal wave by a partly through-thickness hole in an isotropic plate, in which the Lamb wave modes are also included due to the mode conversions by the scattering obstacle in the 3D problem. An analytical model is presented such that the wave fields are expanded in all of propagating and evanescent SH modes and Lamb modes, and the scattered far-fields of three fundamental guided wave modes are analyzed numerically for different sizes of the holes and frequencies. The numerical results are verified by comparing with those obtained by using the approximate Poisson/Mindlin plate model for small hole radius and low frequency. It is also found that the scattering patterns are different from those of the SO wave incidence. Our work is useful for quantitative evaluation of the plate-like structure by ultrasonic guided waves.
基金supported by the National Natural Science Foundation of China(No.11272222)the Key Project of Hebei Provincial Education Department of China(No.ZD2017072)
文摘The dispersion behavior of the shear horizontal (SH) waves in the coupled structure consisting of a piezomagnetic substrate and an orthorhombic piezoelectric layer is investigated with different cut orientations. The surface of the piezoelectric layer is mechanically free, electrically shorted, or open, while the surface of the piezomagnetic substrate is mechanically free, magnetically open, or shorted. The dispersion relations are derived for four electromagnetic boundary conditions. The dispersion characteristics are graphically illustrated for the layered structure with the PMN-PT layer perfectly bonded on the CoFe2O4 substrate. The effects of the PMN-PT cut orientations, the electromagnetic boundary conditions, and the thickness ratio of the layer to the substrate on the dispersion behavior are analyzed and discussed in detail. The results show that, (i) the effect of the cut orientation on the dispersion curves is very obvious, (ii) the electrical boundary conditions of the PMN-PT layer dominate the propagation feature of the SH waves, and (iii) the thickness ratio has a significant effect on the phase velocity when the wave number is small. The results of the present paper can provide valuable theoretical references to the applications of piezoelectric/piezomagnectic structure in acoustic wave devices.
文摘The present study deals with the propagation of a polarized shear horizontal(SH)wave in a pre-stressed piezoelectric cylinder circumscribed by a self-reinforced cylinder.The interface of the two media is assumed mechanically imperfect.For obtaining the dispersion relation,the mathematical formulation has been developed and solved by an analytical treatment.The effects of various parameters,i.e.,the thickness ratio,the imperfect interface,the initial stress,the reinforcement,and the piezoelectric and dielectric constants,on the dispersion curve are observed prominently.The dispersion curves for different modes have been also plotted.The consequences of the study may be used for achieving optimum efficiency of acoustic wave devices.
文摘超声水平剪切(Shear horizontal,SH)导波在工业在役板材成像检测和结构健康监测(Structural health monitoring,SHM)中有重要的应用价值。基于合成孔径聚焦方法,对钢板中人工缺陷用超声SH导波进行成像,对边界散射条件下的成像检测阵列信号进行分析,探讨了边界散射对超声SH导波成像检测的影响。研究结果表明,基于合成孔径聚焦的超声SH导波成像方法用于板材缺陷成像检测时,超声边界散射使成像信号'双曲线'阵列特征弱化,缺陷声波信号衰减增大,信号散射噪声增强,进而使成像清晰度降低,易导致漏检;同时边界散射会造成同一缺陷信号产生'双峰'或'多峰',成像信号'双曲线'阵列特征紊乱,使成像发生畸变,会导致误检。这将为进一步改进工业在役大尺度板材超声导波成像质量与提高结构健康监测水平提供重要基础。