UTT (Ultrasonic Tomography Tool) is widely used in the oil industry and can be used to inspect corrosion, casing wall damage, casing breakoff, and casing distortion in the well borehole with the maximum environment ...UTT (Ultrasonic Tomography Tool) is widely used in the oil industry and can be used to inspect corrosion, casing wall damage, casing breakoff, and casing distortion in the well borehole with the maximum environment temperature being 125 ℃, and the pressure being 60 MPa. UTT consists of tool head, upper centralization, electronic section, lower centralization, transmitters, and receivers. Its outer diameter is 4.6 cm and length is 320 cm. The measured casing diameter ranges from 60 mm to 254 mm. The tomography resolution is 512×512. The borehole measurement accuracy is 2 mm. It can supply 3D pipe tomography, including horizontal and vertical profile. This paper introduces its specification, measurement principle, and applications in oilfield.展开更多
The main challenge in bone ultrasound imaging is the large acoustic impedance contrast and sound velocity differences between the bone and surrounding soft tissue. It is difficult for conventional pulse-echo modalitie...The main challenge in bone ultrasound imaging is the large acoustic impedance contrast and sound velocity differences between the bone and surrounding soft tissue. It is difficult for conventional pulse-echo modalities to give accurate ultrasound images for irregular bone boundaries and microstructures using uniform sound velocity assumption rather than getting a prior knowledge of sound speed. To overcome these limitations, this paper proposed a frequency-domain fullwaveform inversion(FDFWI) algorithm for bone quantitative imaging utilizing ultrasonic computed tomography(USCT).The forward model was calculated in the frequency domain by solving the full-wave equation. The inverse problem was solved iteratively from low to high discrete frequency components via minimizing a cost function between the modeled and measured data. A quasi-Newton method called the limited-memory Broyden–Fletcher–Goldfarb–Shanno algorithm(L-BFGS) was utilized in the optimization process. Then, bone images were obtained based on the estimation of the velocity and density. The performance of the proposed method was verified by numerical examples, from tubular bone phantom to single distal fibula model, and finally with a distal tibia-fibula pair model. Compared with the high-resolution peripheral quantitative computed tomography(HR-p QCT), the proposed FDFWI can also clearly and accurately presented the wavelength scaled pores and trabeculae in bone images. The results proved that the FDFWI is capable of reconstructing high-resolution ultrasound bone images with sub-millimeter resolution. The parametric bone images may have the potential for the diagnosis of bone disease.展开更多
With Laser Reflective Tomography(LRT),the near fields of ultrasonic transducers were measured and analyzed.The principle of LRT measurement of ultrasonic field distribution was introduced and an experimental system ...With Laser Reflective Tomography(LRT),the near fields of ultrasonic transducers were measured and analyzed.The principle of LRT measurement of ultrasonic field distribution was introduced and an experimental system was set up.Acoustic pressure of a multiple element piston transducer was measured by using of a laser vibrometer.Its distribution in amplitude and phase was obtained.The acoustic pressure in the same region was measured with a needle hydrophone to validate the LRT method.Furthermore,through reconstruction of acoustic fields,it indicated that LRT method is suitable for predicting the distribution on transducers'surface and conditions of active elements.展开更多
In this paper, mathematical analysis shows that the reconstruction of ultrasonic reflection mode tomography using a single transducer acting as both source and receiver far from the object can be obtained by employing...In this paper, mathematical analysis shows that the reconstruction of ultrasonic reflection mode tomography using a single transducer acting as both source and receiver far from the object can be obtained by employing filtered-backprojection algorithm which is widely used in X-ray tomography; but when the transducer is near to the object, this algorithm will result in image distortion. On the basis of mathematical analysis, we propose a new algorithm. Computer simulation demonstrates an obvious improvement in the reconstructed images employing this algorithm over the conventional filtered-backprojection method of X-ray tomography.展开更多
High early strength(HES)concrete pavements are commonly opened to traffic within the first 24 h after construction,making early-opening decisions critical for pavement quality and traffic operations.Currently,most sta...High early strength(HES)concrete pavements are commonly opened to traffic within the first 24 h after construction,making early-opening decisions critical for pavement quality and traffic operations.Currently,most state departments of transportation rely on compressive strength testing for early-opening decision making.However,there laboratory tests are labor intensive,costly and not always representative of field strength development.In this study,non-destructive testing(maturity and ultrasonic tomography)was explored for faster and reliable in-situ strength estimations.An experimental section constructed using HES concrete was routinely monitored using compressive testing,maturity,and ultrasonic tomography in the first 24 h after construction.The shear wave velocity,measured using ultrasonic tomography,was able to capture the strength-gain variability within a single slab and between different slabs due to the ability to monitor several locations in a short period of time.Maturity results were consistently conservative in the first 24 h of monitoring.Results show that both maturity testing and ultrasonic tomography are able to replace or add to conventional strength testing for HES concrete pavements to facilitate making the opening decision within the first 24 h.Ultrasonic tomography proved more beneficial as a result of the device's portability,increased speed of testing,and accurate estimations of HES concrete strength for the entire pavement length.展开更多
文摘UTT (Ultrasonic Tomography Tool) is widely used in the oil industry and can be used to inspect corrosion, casing wall damage, casing breakoff, and casing distortion in the well borehole with the maximum environment temperature being 125 ℃, and the pressure being 60 MPa. UTT consists of tool head, upper centralization, electronic section, lower centralization, transmitters, and receivers. Its outer diameter is 4.6 cm and length is 320 cm. The measured casing diameter ranges from 60 mm to 254 mm. The tomography resolution is 512×512. The borehole measurement accuracy is 2 mm. It can supply 3D pipe tomography, including horizontal and vertical profile. This paper introduces its specification, measurement principle, and applications in oilfield.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.11827808,11874289,and 11804056)the National Science Fund for Distinguished Young Scholars of China(Grant No.11525416)+3 种基金Shanghai Municipal Science and Technology Major Project,China(Grant No.2017SHZDZX01)Shanghai Talent Development Fund(Grant No.2018112)State Key Laboratory of ASIC and System Project(Grant No.2018MS004)China Postdoctoral Science Foundation(Grant No.2019M661334)。
文摘The main challenge in bone ultrasound imaging is the large acoustic impedance contrast and sound velocity differences between the bone and surrounding soft tissue. It is difficult for conventional pulse-echo modalities to give accurate ultrasound images for irregular bone boundaries and microstructures using uniform sound velocity assumption rather than getting a prior knowledge of sound speed. To overcome these limitations, this paper proposed a frequency-domain fullwaveform inversion(FDFWI) algorithm for bone quantitative imaging utilizing ultrasonic computed tomography(USCT).The forward model was calculated in the frequency domain by solving the full-wave equation. The inverse problem was solved iteratively from low to high discrete frequency components via minimizing a cost function between the modeled and measured data. A quasi-Newton method called the limited-memory Broyden–Fletcher–Goldfarb–Shanno algorithm(L-BFGS) was utilized in the optimization process. Then, bone images were obtained based on the estimation of the velocity and density. The performance of the proposed method was verified by numerical examples, from tubular bone phantom to single distal fibula model, and finally with a distal tibia-fibula pair model. Compared with the high-resolution peripheral quantitative computed tomography(HR-p QCT), the proposed FDFWI can also clearly and accurately presented the wavelength scaled pores and trabeculae in bone images. The results proved that the FDFWI is capable of reconstructing high-resolution ultrasound bone images with sub-millimeter resolution. The parametric bone images may have the potential for the diagnosis of bone disease.
文摘With Laser Reflective Tomography(LRT),the near fields of ultrasonic transducers were measured and analyzed.The principle of LRT measurement of ultrasonic field distribution was introduced and an experimental system was set up.Acoustic pressure of a multiple element piston transducer was measured by using of a laser vibrometer.Its distribution in amplitude and phase was obtained.The acoustic pressure in the same region was measured with a needle hydrophone to validate the LRT method.Furthermore,through reconstruction of acoustic fields,it indicated that LRT method is suitable for predicting the distribution on transducers'surface and conditions of active elements.
基金The project is supported by National Natural Science Foundation
文摘In this paper, mathematical analysis shows that the reconstruction of ultrasonic reflection mode tomography using a single transducer acting as both source and receiver far from the object can be obtained by employing filtered-backprojection algorithm which is widely used in X-ray tomography; but when the transducer is near to the object, this algorithm will result in image distortion. On the basis of mathematical analysis, we propose a new algorithm. Computer simulation demonstrates an obvious improvement in the reconstructed images employing this algorithm over the conventional filtered-backprojection method of X-ray tomography.
基金supported by the by the University of Pittsburgh Center for Impactful Resilient Infrastructure Science and Engineering(IRISE)the University of Pittsburgh Anthony Gill Chair。
文摘High early strength(HES)concrete pavements are commonly opened to traffic within the first 24 h after construction,making early-opening decisions critical for pavement quality and traffic operations.Currently,most state departments of transportation rely on compressive strength testing for early-opening decision making.However,there laboratory tests are labor intensive,costly and not always representative of field strength development.In this study,non-destructive testing(maturity and ultrasonic tomography)was explored for faster and reliable in-situ strength estimations.An experimental section constructed using HES concrete was routinely monitored using compressive testing,maturity,and ultrasonic tomography in the first 24 h after construction.The shear wave velocity,measured using ultrasonic tomography,was able to capture the strength-gain variability within a single slab and between different slabs due to the ability to monitor several locations in a short period of time.Maturity results were consistently conservative in the first 24 h of monitoring.Results show that both maturity testing and ultrasonic tomography are able to replace or add to conventional strength testing for HES concrete pavements to facilitate making the opening decision within the first 24 h.Ultrasonic tomography proved more beneficial as a result of the device's portability,increased speed of testing,and accurate estimations of HES concrete strength for the entire pavement length.