[Objective] The study aimed at investigating the influence of enhanced UV-B radiation on photosynthesis of grapevine.[Method] The seedlings of Cabernet sauvignon were treated with different intensities of UV-B radiati...[Objective] The study aimed at investigating the influence of enhanced UV-B radiation on photosynthesis of grapevine.[Method] The seedlings of Cabernet sauvignon were treated with different intensities of UV-B radiation under outdoor conditions,and then the contents of photosynthetic pigments and flavonoids in leaves were determined by measuring the absorbance of leaves extracts at 663,645,470 and 300 nm,respectively.[Result] The content of photosynthetic pigments in the leaves of grapevine obviously increased with time under the treatments of different enhanced UV-B radiation.Compared with the control,the chlorophyll a,chlorophyll b,total chlorophyll and carotenoid were obviously increased by 5%,2%,4% and 3% in the enhanced UV-B radiation treatment of 10.8 μW/cm2(T1),and in the treatment of 25.6 μW/cm2(T2) the corresponding levels were subsequently increased by 11%,9%,10% and 7% with a significant increase in the content of chlorophyll a.On the other hand,the flavonoids content in the leaves of grapevine were obviously increased by 13%,9% in T1 and T2.[Conclusion] The grapevine has strong adaptability to UV-B radiation,and appropriate enhanced UV-B radiation couldn't decrease the photosynthesis of grapevine leaves.展开更多
[Objective] Effects of different concentrations of nitric oxide on membrane lipid peroxidation of wheat induced by enhanced UV-B radiation were researched,sodium nitroprusside (SNP) was selected as an exogenous nitr...[Objective] Effects of different concentrations of nitric oxide on membrane lipid peroxidation of wheat induced by enhanced UV-B radiation were researched,sodium nitroprusside (SNP) was selected as an exogenous nitric oxide(NO)donor.[Method] There are 3 groups including CK,UV treatment group (B),B+SNP treatment group,0,1,2,3,4 d sampling after treatment respectively,and physiological and biochemical indexes of MDA content and CAT,POD,SOD and so on were determined,repeated 3 times,and statistical analyzed.[Result] The results showed that,after the enhanced UV-B radiation,activity of the catalase (CAT),superoxide dismutase (SOD) and of the guaiacol peroxidase (POD) all reduced apparently,and the concentration of malondialdehyde (MDA) increased obviously,leading to oxidative damage in wheat seedlings.Impose different concentrations of SNP after UV-B radiation,may mitigate oxidative damage of wheat seedling from different degrees,which was in agreement with the effect of making the concentration of MDA decrease and the activity of the CAT,SOD and POD all increased.The mitigation role of 0.01 mol/L SNP was more obvious for roots' oxidative damage,while 0.1 mmol/L SNP is more effective for oxidative damage of leaves.[Conclusion] Exogenous NO donor SNP had obvious relieve effects on oxidative damage of wheat seedlings caused by UV-B radiation,which can enhance adaptive capacity of plants to adversity stress.展开更多
Effect of cerium (Ce^3+) on growth and photosynthesis in rape seedlings exposed to two levels of ultraviolet-B radiation (UV-B, 280 - 320 nm) was studied with hydroponics under laboratory conditions. The growth o...Effect of cerium (Ce^3+) on growth and photosynthesis in rape seedlings exposed to two levels of ultraviolet-B radiation (UV-B, 280 - 320 nm) was studied with hydroponics under laboratory conditions. The growth of rape seedlings exposed to two levels of UV-B irradiation (0.15 and 0.35 W· m^-2/T2) was both heavily restrained. The aboveground growth indices including stem (plant) height, leaf number, leaf area, leaf fresh/dry weight and stem fresh/dry weight were obviously decreased by 13.2% - 44.1% (T1) and 21 .4% - 49.3% (T2). Compared to CK, and except active absorption area of roots, the belowground indices main root length, root volume and fresh/dry weight by 14.1% -35.6% (T1) and 20.3% - 42.6% (T2), respectively. For Ce + UV-B treatments, the aboveground and belowground growth indices were decreased by 4.1% - 23.6%, 5.2% -23.3% (Ce+T1) and 10.8% -28.4%, 7.0% -27.8% (Ce +T2), lower than those of UV-B treatments mentioned above. These results show that Ce has protective effect on plant against injury of UV-B radiation. Furthermore, the protective effect of Ce on seedlings exposed to T1 level of UV-B radiation is superior to T2 level. Chlorophyll content, net photosynthesis rate, transpiration rate, stomatal conductance and water use efficiency in UV-B treatments decrease dramatically, whereas intercellular CO2 concentration increases. Although these indices in Ce + UV-B treatments decrease compared with those of CK, the decrease in Ce + UV-B treatments are lower than those in UV-B treatment. This phenomenon indicates that the ecophysiological protective effect of Ce is based on improving photosynthesis in plants. The dynamic curves of photosynthesis indices show that the course of light-repair is shortened and the injury to rape seedlings by UV-B radiation stress is alleviated by Ce.展开更多
The effect of La on flavonoids, chlorophyll contents, and phenylalanine ammonia-lyase (PAL) activity in soybean seedlings under supplementary ultraviolet-B radiation (UV-B, 280 - 320 nm) was studied. The results s...The effect of La on flavonoids, chlorophyll contents, and phenylalanine ammonia-lyase (PAL) activity in soybean seedlings under supplementary ultraviolet-B radiation (UV-B, 280 - 320 nm) was studied. The results show that PAL activity, contents of flavonoids and chlorophyll in the plants pretreated with La (20 mg·L^- 1 ) are higher than those in CK. UV-B radiation could result in an increase in flavonoid content and PAL activity, associated with a decrease in chlorophyll content. However, the increase in the range of PAL activity and flavonoid content in UV-B treatment are lesser than those in the La treatment. The changes of flavonoid contents and PAL activity in La + UV-B treatment are similar to those in UV-B treatment, and the increase in their range is higher than those in UV-B treatment. This shows that La can enhance the resistance of soybean seedling to UV-B radiation and alleviate the damage of UV-B radiation by increasing flavonoid content, chlorophyll content, and PAL activity.展开更多
This review describes the effects of ultraviolet-B (UV-B) radiation on plant growth and development, photosynthesis and photosynthetic pigments and UV-B absorbing compounds. Moreover, plant ecosystem level responses...This review describes the effects of ultraviolet-B (UV-B) radiation on plant growth and development, photosynthesis and photosynthetic pigments and UV-B absorbing compounds. Moreover, plant ecosystem level responses to elevated UV-B radiation and interactions of UV-B radiation with abiotic and biotic factors were also involved. Results collected in this review suggest that approximately two-thirds terrestrial plant species are significantly affected by increase in UV-B radiation, The majority of evidences indicate that elevated UV-B radiation is usually detrimental but there exists tremendous variability in the sensitivity of species to UV-B radiation, and sensitivity also differs among cultivars of the same species.展开更多
Effect of cerium (Ce^3+) on the growth, photosynthesis and antioxidant enzyme system in rape seedlings (Brassica juncea L.) exposed to two levels of UV-B radiation (T1: 0.15 W/m^2 and T2:0.35 W/m^2) was studi...Effect of cerium (Ce^3+) on the growth, photosynthesis and antioxidant enzyme system in rape seedlings (Brassica juncea L.) exposed to two levels of UV-B radiation (T1: 0.15 W/m^2 and T2:0.35 W/m^2) was studied by hydroponics under laboratory conditions. After 5 d of UV-B treatment, the aboveground growth indices were obviously decreased by 13.2%-44. 1%(T1) and 21.4%-49.3% (T2), compared to CK, and except active absorption area of roots, the belowground indices by 14.1%-35.6%(T1) and 20.3%-42.6% (T2). For Ce+UV-B treatments, the aboveground and belowground growth indices were decreased respectively by 4.1%-23.6%, 5.2% -23.3%(Ce+T1) and 10.8%-28.4%, 7.0%-27.8%(Ce+T2), lower than those of UV-B treatments. The decrease of growth indices appeared to be the result of changes of physiological processes. Two levels of UV-B radiation induced the decrease in chlorophyll content, net photosynthesis rate, transpiration rate, stomatal conductance and water use efficiency by 11.2%-25.9%(T1) and 20.9%- 56.9%(T2), whereas increase in membrane permeability and activities of antioxidant enzymes including superoxide dismutase(SOD), catalase (CAT) and peroxidase (POD) by 6.9%, 22.8%, 21.5%, 9.5%(T1) and 36.6%, 122.3%, 103.5%, 208.9%(T2), respectively. The reduction of the photosynthetic parameters in Ce+UV-B treatments was lessened to 3.2%-13.8%(Ce+T1) and 4.9%-27.6%(Ce+T2), and the increase of membrane permeability and activities of antioxidant enzymes except POD in the same treatments were lessened to 2.4%, 8.4%, 6.6%(Ce+T1) and 30.1%, 116.7%, 75.4%(Ce+T2). These results indicate that the regulative effect of Ce on photosynthesis and antioxidant enzymatic function is the ecophysiological basis of alleviating the suppression of UV-B radiation on growth of seedlings. Furthermore, the protective effect of Ce on seedlings exposed to TI level of UV-B radiation is superior to T2 level.展开更多
Effects of cerium (Ce^3+) on photosynthetic characteristics were investigated by hydroponics under laboratory conditions when soybean seedlings were exposed to two levels of supplementary UV-B radiation. UV-B radia...Effects of cerium (Ce^3+) on photosynthetic characteristics were investigated by hydroponics under laboratory conditions when soybean seedlings were exposed to two levels of supplementary UV-B radiation. UV-B radiation badly inhibited the photosynthesis in soybean seedling, leading to a reduction in net photosynthetic rate (Pn), Hill reaction activity, light saturated photosynthetic rate (Ps) and apparent quanta yield (AQY), as well as the CO2 and light saturated photosynthetic rate (Pro) and carboxulation efficiency (CE). On the contrary, Ce obviously promoted the photosynthesis of plants by increasing Hill reaction activity, accelerating electron transport and photophosphorylation, and enhancing carboxylation efficiency. For Ce+UV-B treatments, the values of photosynthetic parameters were still lower than those of the control, but obviously higher than those of UV-B treatment. The results indicated that Ce alleviated the inhibition of UV-B radiation on the photosynthesis in soybean seedling to a certain extent. In correlating of Pn with Hill activity, AQY and CE, we found that the changes of photosynthetic rate were mainly influenced by the regulating effect of Ce on Hill activity and AQY at low level (0.15 W/m^2) of UV-B radiation, but were dominated by the regulating effect of Ce on CE at high level (0.45 W/m^2). Thus, Ce could regulate many aspects in photosynthesis of soybean seedling under UV-B stress. The regulating mechanism was close related with the dosage of UV-B radiation.展开更多
Effects of cerium (Ce^3+ ) on membranous protective enzymes in rape seedlings exposed to two levels of enhanced uhraviolet-B radiation (UV-B, 280 - 320 nm) were studied by hydroponics in the laboratory. The resul...Effects of cerium (Ce^3+ ) on membranous protective enzymes in rape seedlings exposed to two levels of enhanced uhraviolet-B radiation (UV-B, 280 - 320 nm) were studied by hydroponics in the laboratory. The results show that the chlorophyll content decreases and membrane permeability increases in the leaves under UV-B irradiation with an intensity of 0.15 and 0.35 W·m^-2. The activities of SOD, CAT and POD are first increased and then decreased in leaves exposed to a low level of UV-B radiation. POD activity in leaves exposed to a high level of UV-B radiation is enhanced constantly. The sensitivities of these enzymes to UV-B radiation are SOD 〉 CAT 〉 POD. The injury by UV-B radiation on the functions of protective enzymes is lightened, their ability to scavenge radicals is improved, and the membrane permeability is maintained by Ce. Furthermore, the protective effect of cerium is more obvious in plants exposed to low levels of UV-B radiation than to high levels of it. Accordingly, all results prove that the protective effect of Ce on plants under UV-B radiation is realized through the protective system of plants.展开更多
Effects of the simulated acid rain(AR) and ultraviolet-B(UV-B, 280-320 nm) radiation with a single or two ways simultaneously (AR + UV-B) on the antioxidant enzyme and photosynthesis of the rape seedlings were ...Effects of the simulated acid rain(AR) and ultraviolet-B(UV-B, 280-320 nm) radiation with a single or two ways simultaneously (AR + UV-B) on the antioxidant enzyme and photosynthesis of the rape seedlings were investigated by the hydroponic culture. The results of static experiment indicated that the tolerance of rape seedling to single stress(AR or UV-B) is stronger than that to dual stresses(AR + UV-B). Furthermore, the dual stresses had additive effect on catalase activity, and a synergistic effect on MDA content, net photosynthesis rate, water use efficiency as well as intercellular CO2 concentration. Meanwhile, it has an independent effect on chlorophyll content, stomatal conductance, and transpiration rate as well as membrane permeability. During 64 h restoration course, the dynamic change in the curves of physiological and biochemical indices were not identical, and none of them show a simple linear variation. According to the static and dynamic experiments, it was found that a responsive sequence of catalase activity, membrane permeability, MDA content and photosynthetic characteristics to the above-mentioned stresses was as follows: AR + UV-B 〉 UV-B 〉 AR.展开更多
The level of ultraviolet-B (UV-B) radiation on the Earth’s surface has increased due to depletion of the ozone layer. Here, we explored the effects of continuous wave He-Ne laser irradiation (632 nm, 5 mW·mm-2, ...The level of ultraviolet-B (UV-B) radiation on the Earth’s surface has increased due to depletion of the ozone layer. Here, we explored the effects of continuous wave He-Ne laser irradiation (632 nm, 5 mW·mm-2, 2 min·d-1) on proliferating-cell nuclear antigen (PCNA) damage repair function of wheat seedlings exposed to enhanced UV-B radiation (10.08 kJ·m-2·d-1) at the early growth stages. Wheat seedlings were irradiated with enhanced UV-B, He-Ne laser treatment or a combination of the two. We explored the transcripts of PCNA in each treatment group using RT-PCR. In addition, total proteins were extracted from the 7-day-old wheat leaves, analyzed by SDS-PAGE and identified by western blot. The results showed that the transcription of PCNA was weakened following UV-B radiation compared to the control. However, when seedlings were subjected to elevated UV-B-damaging radiation followed by He-Ne laser irradiation, the expression of PCNA was signifi-cantly higher than UV-B radiation alone. These results suggest that He-Ne laser has an active role in repairing the UV-B damaging effects. In order to further investigate the function of PCNA, dynamic arrangements of PCNA in wheat root-tip cells were observed with confocal laser scanning microscopy (CLSM). The PCNA was marked fluorescent dimming and strength weakened in en-hanced UV-B radiation (UV-B) compared with the control group (CK) during processing. It shows that PCNA may be involved in the separation of chromosomes.展开更多
Research on the effects of ultraviolet-B (UV-B) radiation on soybean seed quality is limited. The objective of this study was to quantify UV-B doses, 0, 5, 10 & 15 kJ•m<sup>–</sup>2•...Research on the effects of ultraviolet-B (UV-B) radiation on soybean seed quality is limited. The objective of this study was to quantify UV-B doses, 0, 5, 10 & 15 kJ•m<sup>–</sup>2•d<sup>–</sup>1, on soybean growth and seed quality. The experiment was conducted in the Soil-Plant-Atmosphere-Research (SPAR) facility. Chambers located at the R.R. Foil Plant Science Research Facility of Mississippi State University, Mississippi, USA, were used. Each SPAR chamber consists of a steel soil bin to accommodate the root system, a Plexiglas chamber to accommodate plant canopy and a heating, and cooling system connected to air ducts that pass conditioned air to cause leaf flutter through the plant canopy. The SPAR units, supported by an environmental monitoring and control systems, are networked to provide automatic acquisition and storage of the data, monitored every 10 seconds throughout the day and night. Soybean cultivar Pioneer 93Y92 (maturity group IV, Roundup Ready) was used in the study. The desired UV-B radiation was supplied by square-wave UV-B supplementation systems under near ambient PAR and delivered to plants for eight hours, each day, from 08:00 to 16:00 h by eight fluorescent UV-313 lamps. The results showed that increased UV-B did not influence many of the growth parameters because the treatments were imposed at mid-fruiting period. Seed quality parameters that are important for seed industry and human and animal nutrition were all affected by UV-B. Protein and palmitic and oleic acids declined linearly, while oil and linoleic and linolenic acid contents increased with increased UV-B. Sucrose, stachyose, and stearic acid contents showed quadratic trends, increased to about 4 - 5 kJ of UV-B and declined at higher doses. Thus, both current and projected UV-B radiation levels can modify soybean growth and seed quality. The functional algorithms developed in this study could be useful to develop UV-B- specific sub-models for soybean farm management and in policy decision areas.展开更多
Wheat (Triticum aestivum), as a kind of important economic crop cultured in the Northern China, is affected by present-day enhanced ultraviolet-B (UV-B) radiation. To get the information of the impact by UV-B radiatio...Wheat (Triticum aestivum), as a kind of important economic crop cultured in the Northern China, is affected by present-day enhanced ultraviolet-B (UV-B) radiation. To get the information of the impact by UV-B radiation on it, the proteins of wheat (Jin mai NO.8) leaves, which were divided into the normal light group (CK) and UV-B radiation group (B), were extracted and ran at SDS-PAGE at different treatment days (5, 6, 7). The proteins were also analyzed by run two-dimensional gel electrophoresis (2-DE), which allowed the identification of some significantly different gel spots. The proteins spots were further verified by Matrix-Assisted Laser Desorption/lonization-time of Flight Mass Spectrometry. The results showed: 1) the enhanced UV-B affects the growth of the wheat, as the visual changes appear on the sixth day;2) the proteins expressions between the B group and the CK group were remarkably different on the sixth day;3) the proteins of wheat leaves of the sixth day were further analyzed by 2-DE revealed that twenty-one protein points were identificated between the B group and the CK group. Among these twenty-one proteins, six proteins of them were up-regulated and twelve proteins of them were down-regulated, three new proteins were expressed only in the B group. Three proteins among six proteins, which were up-regulated, were further verified as RuBisCo large subunit binding protein;SOD;Calmodulin. The result indicates wheat could improve genes encoding proteins in their leaves and protect themselves, when enhanced UV-B affects the growth of the wheat.展开更多
To explore the wheat seedling development and physiological responses under copper contamination and enhanced ultraviolet-B (UV-B) irradiation, 10 mg·L-1 CuCl2 solution was irrigated to Triticum aestivum L. cv. L...To explore the wheat seedling development and physiological responses under copper contamination and enhanced ultraviolet-B (UV-B) irradiation, 10 mg·L-1 CuCl2 solution was irrigated to Triticum aestivum L. cv. Linyuan 2069 one day after germination with or without ultraviolet-B (10.08 kJ m-2·d-1) light exposure, respectively. The results showed that Cu2+ and UV-B caused various adverse effects on wheat seedling development. Cu2+ hindered root development by significantly reducing root number, while UV-B dwarfed seedling height and decreased the leaf length. Chlorophyll content and activity of ATPase in thylakoid membrane of wheat leaves dropped significantly under enhanced UV-B while the activity of ATPase in plasma membrane of seedling root was significantly decreased in Cu2+ group. Relative electric conductivity of leaves significantly increased in both Cu2+ and UV-B groups, so did the biomass. We also observed that combined Cu2+ and UV-B showed more adverse effects on wheat seedlings than either of them alone except for root growth.展开更多
We explored the use of exogenous nitric oxide (NO) on alleviating effects of UV-B light on winter wheat development. Triticum aestivum L. cv. Linyou 7287 seeds were irradiated with UV-B (10.08 kJ·m–2·d–1) ...We explored the use of exogenous nitric oxide (NO) on alleviating effects of UV-B light on winter wheat development. Triticum aestivum L. cv. Linyou 7287 seeds were irradiated with UV-B (10.08 kJ·m–2·d–1) (enhanced UV-B) and watered with either water or 100 μmol·L–1 SNP solution. Plants were also watered with the SNP alone. The results showed that enhanced UV-B produced negative effects on seedling development. Leaf length decreased and seedling biomass dropped significantly compared with the control. Photochemical efficiency (Fv/Fm) dropped, and chlorophyll and carotenoid content as well as the ATPase activity declined. Content of UV-absorbing compounds and activity of the POD increased compared to the control. Application of the SNP, a NO donor partially protected wheat seedlings exposed to elevated UV-B radiation in that their leaf lengths and biomass accumulation were enhanced compared to the UV-B treatment alone. SNP also improved the contents of chlorophyll, carotenoid and UV-absorbing compounds in leaves. ATPase activity was enhanced but no influence on POD activity. Furthermore, the application of SNP alone showed a favorable effect on seedling growth compared with the control.展开更多
The distribution and morphology alterations of microfilaments and microtubules in the mesophyll cells and root-tip cells of wheat seedlings, which had been radiated by enhanced ultraviolet-B (10.08 KJ·m-2·d-...The distribution and morphology alterations of microfilaments and microtubules in the mesophyll cells and root-tip cells of wheat seedlings, which had been radiated by enhanced ultraviolet-B (10.08 KJ·m-2·d-1), were examined through the confocal laser scanning microscope (Model FV1000, Olympus, Japan). Microtubule was labeled with an indirect immunofluorescence staining method, and microfilament was labeled with fluorescein isothiocyanate-phalloidin (FITC-Ph) as probes. The results indicated that microtubules in mesophyll cells, compared with the controls, would be depolymerized significantly, and dispersed randomly showing some spots or short rods in the cytoplasm, under the enhanced UV-B radiation condition. The microtubule bundles tended to be diffused, and the fluorescence intensity of that significantly decreased. The distribution pattern of microfilaments, which usually arranged parallelly in control cells, was broken up by enhanced UV-B radiation. We further investigated the distribution and morphology of microtubules in root-tip cells during every stage of cell division, and found that these aberrant phenomena of microtubules were often associated with abnormal cell division. Our findings suggested that the distribution, morphology and structure of cytoskeleton in mesophyll cells and root-tip cells of wheat seedlings would be affected by enhanced UV-B radiation, which might be related to abnormal cell division caused by enhanced UV-B radiation as an extracellular signal.展开更多
In the present study,an indoor potting experiment was conducted to study the effects of enhanced UV-B radiation and Magnaporthe oryzae on the growth,stomatal structure,photosynthesis,and endogenous hormone contents of...In the present study,an indoor potting experiment was conducted to study the effects of enhanced UV-B radiation and Magnaporthe oryzae on the growth,stomatal structure,photosynthesis,and endogenous hormone contents of a traditional rice cultivar Baijiaolaojing in the Yuanyang terraces of Yunnan Province.In addition,the relationships between these parameters and disease indices were analyzed.We aimed to clarify the response of the photosynthetic physiology of rice under the combined stress of UV-B radiation and M.oryzae.Compared with the M.oryzae infection treatment,all the treatments,including M.oryzae infection before(MBR),simultaneously with(MSR),and after(MAR)UV-B radiation significantly increased the rice height and biomass by 4%–11%and 30%–111%,respectively,and the stomatal structure and carotenoids content of leaves,while decreasing the contents of chlorophyll a and b,by 21%–41%and 63%–73%,respectively.Both the MSR and MBR treatments significantly increased the photosynthetic rate and transpiration rate of rice leaves.The MAR treatment weakened chlorophyll fluorescence parameters,including the actual photosystem II(PS II)photochemical efficiency,electron transport rate,photochemical quenching,and nonphotochemical quenching by 40%,39%,43%,and 24%,respectively.Moreover,the treatments of MAR,MSR,and MBR decreased the phytohormones content and the M.oryzae disease index by 27%–62%in rice leaves.Thus,the enhanced UV-B radiation contributed to suppressing the M.oryzae infection and alleviating its damage to the photosynthesis of rice leaves.This study is valuable for the control of rice blast fungus and offers important insights into plant pathology.展开更多
Transarterial radioembolization or selective internal radiation therapy(SIRT)has emerged as a minimally invasive approach for the treatment of tumors.This percutaneous technique involves the local,intra-arterial deliv...Transarterial radioembolization or selective internal radiation therapy(SIRT)has emerged as a minimally invasive approach for the treatment of tumors.This percutaneous technique involves the local,intra-arterial delivery of radioactive microspheres directly into the tumor.Historically employed as a palliative measure for liver malignancies,SIRT has gained traction over the past decade as a potential curative option,mirroring the increasing role of radiation segmentectomy.The latest update of the BCLC hepatocellular carcinoma guidelines recognizes SIRT as an effective treatment modality comparable to other local ablative methods,particularly well-suited for patients where surgical resection or ablation is not feasible.Radiation segmentectomy is a more selective approach,aiming to deliver high-dose radiation to one to three specific hepatic segments,while minimizing damage to surrounding healthy tissue.Future research efforts in radiation segmentectomy should prioritize optimizing radiation dosimetry and refining the technique for super-selective administration of radiospheres within the designated hepatic segments.展开更多
The pan-Arctic is confronted with air pollution transported from lower latitudes.Observations have shown that aerosols help increase plant photosynthesis through the diffuse radiation fertilization effects(DRFEs).Whil...The pan-Arctic is confronted with air pollution transported from lower latitudes.Observations have shown that aerosols help increase plant photosynthesis through the diffuse radiation fertilization effects(DRFEs).While such DRFEs have been explored at low to middle latitudes,the aerosol impacts on pan-Arctic ecosystems and the contributions by anthropogenic and natural emission sources remain less quantified.Here,we perform regional simulations at 0.2o×0.2ousing a well-validated vegetation model(Yale Interactive terrestrial Biosphere,YIBs)in combination with multi-source of observations to quantify the impacts of aerosol DRFEs on the net primary productivity(NPP)in the pan-Arctic during 2001-19.Results show that aerosol DRFEs increase pan-Arctic NPP by 2.19 Pg C(12.8%)yr^(-1)under clear-sky conditions,in which natural and anthropogenic sources contribute to 8.9% and 3.9%,respectively.Under all-sky conditions,such DRFEs are largely dampened by cloud to only 0.26 Pg C(1.24%)yr^(-1),with contributions of 0.65% by natural and 0.59% by anthropogenic species.Natural aerosols cause a positive NPP trend of 0.022% yr^(-1)following the increased fire activities in the pan-Arctic.In contrast,anthropogenic aerosols induce a negative trend of-0.01% yr^(-1)due to reduced emissions from the middle latitudes.Such trends in aerosol DRFEs show a turning point in the year of 2007 with more positive NPP trends by natural aerosols but negative NPP trends by anthropogenic aerosols thereafter.Though affected by modeling uncertainties,this study suggests a likely increasing impact of aerosols on terrestrial ecosystems in the pan-Arctic under global warming.展开更多
High-speed solar-blind short wavelength ultraviolet radiation detectors based onκ(ε)-Ga_(2)O_(3)layers with Pt contacts were demonstrated and their properties were studied in detail.Theκ(ε)-Ga_(2)O_(3)layers were ...High-speed solar-blind short wavelength ultraviolet radiation detectors based onκ(ε)-Ga_(2)O_(3)layers with Pt contacts were demonstrated and their properties were studied in detail.Theκ(ε)-Ga_(2)O_(3)layers were deposited by the halide vapor phase epitaxy on patterned GaN templates with sapphire substrates.The spectral dependencies of the photoelectric properties of struc-tures were analyzed in the wavelength interval 200-370 nm.The maximum photo to dark current ratio,responsivity,detectiv-ity and external quantum efficiency of structures were determined as:180.86 arb.un.,3.57 A/W,1.78×10^(12) Hz^(0.5)∙cm·W^(-1) and 2193.6%,respectively,at a wavelength of 200 nm and an applied voltage of 1 V.The enhancement of the photoresponse was caused by the decrease in the Schottky barrier at the Pt/κ(ε)-Ga_(2)O_(3)interface under ultraviolet exposure.The detectors demon-strated could functionalize in self-powered mode due to built-in electric field at the Pt/κ(ε)-Ga_(2)O_(3)interface.The responsivity and external quantum efficiency of the structures at a wavelength of 254 nm and zero applied voltage were 0.9 mA/W and 0.46%,respectively.The rise and decay times in self-powered mode did not exceed 100 ms.展开更多
Modern trends in beam-driven radiation sources include the interaction of Cherenkov wakefields in open-ended circular waveguides with complicated dielectric linings, with a three-layer dielectric capillary recently pr...Modern trends in beam-driven radiation sources include the interaction of Cherenkov wakefields in open-ended circular waveguides with complicated dielectric linings, with a three-layer dielectric capillary recently proposed to reduce radiation divergence being a representative example [Opt. Lett. 45 5416(2020)]. We present a rigorous approach that allows for an analytical description of the electromagnetic processes that occur when the structure is excited by a single waveguide TM mode. In other words, the corresponding canonical waveguide diffraction problem is solved in a rigorous formulation. This is a continuation of our previous papers which considered simpler cases with a homogeneous or two-layer dielectric filling. Here we use the same analytical approach based on the Wiener–Hopf–Fock technique and deal with the more complicated case of a three-layer dielectric lining. Using the obtained rigorous solution, we discuss the possibility of manipulating the far-field radiation pattern using a third layer made of a low permittivity material.展开更多
文摘[Objective] The study aimed at investigating the influence of enhanced UV-B radiation on photosynthesis of grapevine.[Method] The seedlings of Cabernet sauvignon were treated with different intensities of UV-B radiation under outdoor conditions,and then the contents of photosynthetic pigments and flavonoids in leaves were determined by measuring the absorbance of leaves extracts at 663,645,470 and 300 nm,respectively.[Result] The content of photosynthetic pigments in the leaves of grapevine obviously increased with time under the treatments of different enhanced UV-B radiation.Compared with the control,the chlorophyll a,chlorophyll b,total chlorophyll and carotenoid were obviously increased by 5%,2%,4% and 3% in the enhanced UV-B radiation treatment of 10.8 μW/cm2(T1),and in the treatment of 25.6 μW/cm2(T2) the corresponding levels were subsequently increased by 11%,9%,10% and 7% with a significant increase in the content of chlorophyll a.On the other hand,the flavonoids content in the leaves of grapevine were obviously increased by 13%,9% in T1 and T2.[Conclusion] The grapevine has strong adaptability to UV-B radiation,and appropriate enhanced UV-B radiation couldn't decrease the photosynthesis of grapevine leaves.
基金Supported by National Natural Science Foundation of China(No.30671061)Natural Science Foundation of Shanxi Province(No.2008011059-1 and No.20041101)~~
文摘[Objective] Effects of different concentrations of nitric oxide on membrane lipid peroxidation of wheat induced by enhanced UV-B radiation were researched,sodium nitroprusside (SNP) was selected as an exogenous nitric oxide(NO)donor.[Method] There are 3 groups including CK,UV treatment group (B),B+SNP treatment group,0,1,2,3,4 d sampling after treatment respectively,and physiological and biochemical indexes of MDA content and CAT,POD,SOD and so on were determined,repeated 3 times,and statistical analyzed.[Result] The results showed that,after the enhanced UV-B radiation,activity of the catalase (CAT),superoxide dismutase (SOD) and of the guaiacol peroxidase (POD) all reduced apparently,and the concentration of malondialdehyde (MDA) increased obviously,leading to oxidative damage in wheat seedlings.Impose different concentrations of SNP after UV-B radiation,may mitigate oxidative damage of wheat seedling from different degrees,which was in agreement with the effect of making the concentration of MDA decrease and the activity of the CAT,SOD and POD all increased.The mitigation role of 0.01 mol/L SNP was more obvious for roots' oxidative damage,while 0.1 mmol/L SNP is more effective for oxidative damage of leaves.[Conclusion] Exogenous NO donor SNP had obvious relieve effects on oxidative damage of wheat seedlings caused by UV-B radiation,which can enhance adaptive capacity of plants to adversity stress.
文摘Effect of cerium (Ce^3+) on growth and photosynthesis in rape seedlings exposed to two levels of ultraviolet-B radiation (UV-B, 280 - 320 nm) was studied with hydroponics under laboratory conditions. The growth of rape seedlings exposed to two levels of UV-B irradiation (0.15 and 0.35 W· m^-2/T2) was both heavily restrained. The aboveground growth indices including stem (plant) height, leaf number, leaf area, leaf fresh/dry weight and stem fresh/dry weight were obviously decreased by 13.2% - 44.1% (T1) and 21 .4% - 49.3% (T2). Compared to CK, and except active absorption area of roots, the belowground indices main root length, root volume and fresh/dry weight by 14.1% -35.6% (T1) and 20.3% - 42.6% (T2), respectively. For Ce + UV-B treatments, the aboveground and belowground growth indices were decreased by 4.1% - 23.6%, 5.2% -23.3% (Ce+T1) and 10.8% -28.4%, 7.0% -27.8% (Ce +T2), lower than those of UV-B treatments mentioned above. These results show that Ce has protective effect on plant against injury of UV-B radiation. Furthermore, the protective effect of Ce on seedlings exposed to T1 level of UV-B radiation is superior to T2 level. Chlorophyll content, net photosynthesis rate, transpiration rate, stomatal conductance and water use efficiency in UV-B treatments decrease dramatically, whereas intercellular CO2 concentration increases. Although these indices in Ce + UV-B treatments decrease compared with those of CK, the decrease in Ce + UV-B treatments are lower than those in UV-B treatment. This phenomenon indicates that the ecophysiological protective effect of Ce is based on improving photosynthesis in plants. The dynamic curves of photosynthesis indices show that the course of light-repair is shortened and the injury to rape seedlings by UV-B radiation stress is alleviated by Ce.
基金Project supported by the National Natural Science Foundation of China (20471030)the Foundation of State PlanningCommittee (IFZ20051210)
文摘The effect of La on flavonoids, chlorophyll contents, and phenylalanine ammonia-lyase (PAL) activity in soybean seedlings under supplementary ultraviolet-B radiation (UV-B, 280 - 320 nm) was studied. The results show that PAL activity, contents of flavonoids and chlorophyll in the plants pretreated with La (20 mg·L^- 1 ) are higher than those in CK. UV-B radiation could result in an increase in flavonoid content and PAL activity, associated with a decrease in chlorophyll content. However, the increase in the range of PAL activity and flavonoid content in UV-B treatment are lesser than those in the La treatment. The changes of flavonoid contents and PAL activity in La + UV-B treatment are similar to those in UV-B treatment, and the increase in their range is higher than those in UV-B treatment. This shows that La can enhance the resistance of soybean seedling to UV-B radiation and alleviate the damage of UV-B radiation by increasing flavonoid content, chlorophyll content, and PAL activity.
基金supported by the National NaturalScience Foundation of China (30700085)the National Basic Re-search Program of China (2009CB421101)
文摘This review describes the effects of ultraviolet-B (UV-B) radiation on plant growth and development, photosynthesis and photosynthetic pigments and UV-B absorbing compounds. Moreover, plant ecosystem level responses to elevated UV-B radiation and interactions of UV-B radiation with abiotic and biotic factors were also involved. Results collected in this review suggest that approximately two-thirds terrestrial plant species are significantly affected by increase in UV-B radiation, The majority of evidences indicate that elevated UV-B radiation is usually detrimental but there exists tremendous variability in the sensitivity of species to UV-B radiation, and sensitivity also differs among cultivars of the same species.
基金The National Natural Science Foundation of China (No. 20471030 30570323) and the Foundation of State Planning Committee(No. GFZ040628)
文摘Effect of cerium (Ce^3+) on the growth, photosynthesis and antioxidant enzyme system in rape seedlings (Brassica juncea L.) exposed to two levels of UV-B radiation (T1: 0.15 W/m^2 and T2:0.35 W/m^2) was studied by hydroponics under laboratory conditions. After 5 d of UV-B treatment, the aboveground growth indices were obviously decreased by 13.2%-44. 1%(T1) and 21.4%-49.3% (T2), compared to CK, and except active absorption area of roots, the belowground indices by 14.1%-35.6%(T1) and 20.3%-42.6% (T2). For Ce+UV-B treatments, the aboveground and belowground growth indices were decreased respectively by 4.1%-23.6%, 5.2% -23.3%(Ce+T1) and 10.8%-28.4%, 7.0%-27.8%(Ce+T2), lower than those of UV-B treatments. The decrease of growth indices appeared to be the result of changes of physiological processes. Two levels of UV-B radiation induced the decrease in chlorophyll content, net photosynthesis rate, transpiration rate, stomatal conductance and water use efficiency by 11.2%-25.9%(T1) and 20.9%- 56.9%(T2), whereas increase in membrane permeability and activities of antioxidant enzymes including superoxide dismutase(SOD), catalase (CAT) and peroxidase (POD) by 6.9%, 22.8%, 21.5%, 9.5%(T1) and 36.6%, 122.3%, 103.5%, 208.9%(T2), respectively. The reduction of the photosynthetic parameters in Ce+UV-B treatments was lessened to 3.2%-13.8%(Ce+T1) and 4.9%-27.6%(Ce+T2), and the increase of membrane permeability and activities of antioxidant enzymes except POD in the same treatments were lessened to 2.4%, 8.4%, 6.6%(Ce+T1) and 30.1%, 116.7%, 75.4%(Ce+T2). These results indicate that the regulative effect of Ce on photosynthesis and antioxidant enzymatic function is the ecophysiological basis of alleviating the suppression of UV-B radiation on growth of seedlings. Furthermore, the protective effect of Ce on seedlings exposed to TI level of UV-B radiation is superior to T2 level.
基金The National Natural Science Foundation of China (No. 20471030, 30570323) the Foundation of State Planning Committee (No.GFZ040628, BG2005040)
文摘Effects of cerium (Ce^3+) on photosynthetic characteristics were investigated by hydroponics under laboratory conditions when soybean seedlings were exposed to two levels of supplementary UV-B radiation. UV-B radiation badly inhibited the photosynthesis in soybean seedling, leading to a reduction in net photosynthetic rate (Pn), Hill reaction activity, light saturated photosynthetic rate (Ps) and apparent quanta yield (AQY), as well as the CO2 and light saturated photosynthetic rate (Pro) and carboxulation efficiency (CE). On the contrary, Ce obviously promoted the photosynthesis of plants by increasing Hill reaction activity, accelerating electron transport and photophosphorylation, and enhancing carboxylation efficiency. For Ce+UV-B treatments, the values of photosynthetic parameters were still lower than those of the control, but obviously higher than those of UV-B treatment. The results indicated that Ce alleviated the inhibition of UV-B radiation on the photosynthesis in soybean seedling to a certain extent. In correlating of Pn with Hill activity, AQY and CE, we found that the changes of photosynthetic rate were mainly influenced by the regulating effect of Ce on Hill activity and AQY at low level (0.15 W/m^2) of UV-B radiation, but were dominated by the regulating effect of Ce on CE at high level (0.45 W/m^2). Thus, Ce could regulate many aspects in photosynthesis of soybean seedling under UV-B stress. The regulating mechanism was close related with the dosage of UV-B radiation.
文摘Effects of cerium (Ce^3+ ) on membranous protective enzymes in rape seedlings exposed to two levels of enhanced uhraviolet-B radiation (UV-B, 280 - 320 nm) were studied by hydroponics in the laboratory. The results show that the chlorophyll content decreases and membrane permeability increases in the leaves under UV-B irradiation with an intensity of 0.15 and 0.35 W·m^-2. The activities of SOD, CAT and POD are first increased and then decreased in leaves exposed to a low level of UV-B radiation. POD activity in leaves exposed to a high level of UV-B radiation is enhanced constantly. The sensitivities of these enzymes to UV-B radiation are SOD 〉 CAT 〉 POD. The injury by UV-B radiation on the functions of protective enzymes is lightened, their ability to scavenge radicals is improved, and the membrane permeability is maintained by Ce. Furthermore, the protective effect of cerium is more obvious in plants exposed to low levels of UV-B radiation than to high levels of it. Accordingly, all results prove that the protective effect of Ce on plants under UV-B radiation is realized through the protective system of plants.
文摘Effects of the simulated acid rain(AR) and ultraviolet-B(UV-B, 280-320 nm) radiation with a single or two ways simultaneously (AR + UV-B) on the antioxidant enzyme and photosynthesis of the rape seedlings were investigated by the hydroponic culture. The results of static experiment indicated that the tolerance of rape seedling to single stress(AR or UV-B) is stronger than that to dual stresses(AR + UV-B). Furthermore, the dual stresses had additive effect on catalase activity, and a synergistic effect on MDA content, net photosynthesis rate, water use efficiency as well as intercellular CO2 concentration. Meanwhile, it has an independent effect on chlorophyll content, stomatal conductance, and transpiration rate as well as membrane permeability. During 64 h restoration course, the dynamic change in the curves of physiological and biochemical indices were not identical, and none of them show a simple linear variation. According to the static and dynamic experiments, it was found that a responsive sequence of catalase activity, membrane permeability, MDA content and photosynthetic characteristics to the above-mentioned stresses was as follows: AR + UV-B 〉 UV-B 〉 AR.
文摘The level of ultraviolet-B (UV-B) radiation on the Earth’s surface has increased due to depletion of the ozone layer. Here, we explored the effects of continuous wave He-Ne laser irradiation (632 nm, 5 mW·mm-2, 2 min·d-1) on proliferating-cell nuclear antigen (PCNA) damage repair function of wheat seedlings exposed to enhanced UV-B radiation (10.08 kJ·m-2·d-1) at the early growth stages. Wheat seedlings were irradiated with enhanced UV-B, He-Ne laser treatment or a combination of the two. We explored the transcripts of PCNA in each treatment group using RT-PCR. In addition, total proteins were extracted from the 7-day-old wheat leaves, analyzed by SDS-PAGE and identified by western blot. The results showed that the transcription of PCNA was weakened following UV-B radiation compared to the control. However, when seedlings were subjected to elevated UV-B-damaging radiation followed by He-Ne laser irradiation, the expression of PCNA was signifi-cantly higher than UV-B radiation alone. These results suggest that He-Ne laser has an active role in repairing the UV-B damaging effects. In order to further investigate the function of PCNA, dynamic arrangements of PCNA in wheat root-tip cells were observed with confocal laser scanning microscopy (CLSM). The PCNA was marked fluorescent dimming and strength weakened in en-hanced UV-B radiation (UV-B) compared with the control group (CK) during processing. It shows that PCNA may be involved in the separation of chromosomes.
文摘Research on the effects of ultraviolet-B (UV-B) radiation on soybean seed quality is limited. The objective of this study was to quantify UV-B doses, 0, 5, 10 & 15 kJ•m<sup>–</sup>2•d<sup>–</sup>1, on soybean growth and seed quality. The experiment was conducted in the Soil-Plant-Atmosphere-Research (SPAR) facility. Chambers located at the R.R. Foil Plant Science Research Facility of Mississippi State University, Mississippi, USA, were used. Each SPAR chamber consists of a steel soil bin to accommodate the root system, a Plexiglas chamber to accommodate plant canopy and a heating, and cooling system connected to air ducts that pass conditioned air to cause leaf flutter through the plant canopy. The SPAR units, supported by an environmental monitoring and control systems, are networked to provide automatic acquisition and storage of the data, monitored every 10 seconds throughout the day and night. Soybean cultivar Pioneer 93Y92 (maturity group IV, Roundup Ready) was used in the study. The desired UV-B radiation was supplied by square-wave UV-B supplementation systems under near ambient PAR and delivered to plants for eight hours, each day, from 08:00 to 16:00 h by eight fluorescent UV-313 lamps. The results showed that increased UV-B did not influence many of the growth parameters because the treatments were imposed at mid-fruiting period. Seed quality parameters that are important for seed industry and human and animal nutrition were all affected by UV-B. Protein and palmitic and oleic acids declined linearly, while oil and linoleic and linolenic acid contents increased with increased UV-B. Sucrose, stachyose, and stearic acid contents showed quadratic trends, increased to about 4 - 5 kJ of UV-B and declined at higher doses. Thus, both current and projected UV-B radiation levels can modify soybean growth and seed quality. The functional algorithms developed in this study could be useful to develop UV-B- specific sub-models for soybean farm management and in policy decision areas.
文摘Wheat (Triticum aestivum), as a kind of important economic crop cultured in the Northern China, is affected by present-day enhanced ultraviolet-B (UV-B) radiation. To get the information of the impact by UV-B radiation on it, the proteins of wheat (Jin mai NO.8) leaves, which were divided into the normal light group (CK) and UV-B radiation group (B), were extracted and ran at SDS-PAGE at different treatment days (5, 6, 7). The proteins were also analyzed by run two-dimensional gel electrophoresis (2-DE), which allowed the identification of some significantly different gel spots. The proteins spots were further verified by Matrix-Assisted Laser Desorption/lonization-time of Flight Mass Spectrometry. The results showed: 1) the enhanced UV-B affects the growth of the wheat, as the visual changes appear on the sixth day;2) the proteins expressions between the B group and the CK group were remarkably different on the sixth day;3) the proteins of wheat leaves of the sixth day were further analyzed by 2-DE revealed that twenty-one protein points were identificated between the B group and the CK group. Among these twenty-one proteins, six proteins of them were up-regulated and twelve proteins of them were down-regulated, three new proteins were expressed only in the B group. Three proteins among six proteins, which were up-regulated, were further verified as RuBisCo large subunit binding protein;SOD;Calmodulin. The result indicates wheat could improve genes encoding proteins in their leaves and protect themselves, when enhanced UV-B affects the growth of the wheat.
文摘To explore the wheat seedling development and physiological responses under copper contamination and enhanced ultraviolet-B (UV-B) irradiation, 10 mg·L-1 CuCl2 solution was irrigated to Triticum aestivum L. cv. Linyuan 2069 one day after germination with or without ultraviolet-B (10.08 kJ m-2·d-1) light exposure, respectively. The results showed that Cu2+ and UV-B caused various adverse effects on wheat seedling development. Cu2+ hindered root development by significantly reducing root number, while UV-B dwarfed seedling height and decreased the leaf length. Chlorophyll content and activity of ATPase in thylakoid membrane of wheat leaves dropped significantly under enhanced UV-B while the activity of ATPase in plasma membrane of seedling root was significantly decreased in Cu2+ group. Relative electric conductivity of leaves significantly increased in both Cu2+ and UV-B groups, so did the biomass. We also observed that combined Cu2+ and UV-B showed more adverse effects on wheat seedlings than either of them alone except for root growth.
文摘We explored the use of exogenous nitric oxide (NO) on alleviating effects of UV-B light on winter wheat development. Triticum aestivum L. cv. Linyou 7287 seeds were irradiated with UV-B (10.08 kJ·m–2·d–1) (enhanced UV-B) and watered with either water or 100 μmol·L–1 SNP solution. Plants were also watered with the SNP alone. The results showed that enhanced UV-B produced negative effects on seedling development. Leaf length decreased and seedling biomass dropped significantly compared with the control. Photochemical efficiency (Fv/Fm) dropped, and chlorophyll and carotenoid content as well as the ATPase activity declined. Content of UV-absorbing compounds and activity of the POD increased compared to the control. Application of the SNP, a NO donor partially protected wheat seedlings exposed to elevated UV-B radiation in that their leaf lengths and biomass accumulation were enhanced compared to the UV-B treatment alone. SNP also improved the contents of chlorophyll, carotenoid and UV-absorbing compounds in leaves. ATPase activity was enhanced but no influence on POD activity. Furthermore, the application of SNP alone showed a favorable effect on seedling growth compared with the control.
文摘The distribution and morphology alterations of microfilaments and microtubules in the mesophyll cells and root-tip cells of wheat seedlings, which had been radiated by enhanced ultraviolet-B (10.08 KJ·m-2·d-1), were examined through the confocal laser scanning microscope (Model FV1000, Olympus, Japan). Microtubule was labeled with an indirect immunofluorescence staining method, and microfilament was labeled with fluorescein isothiocyanate-phalloidin (FITC-Ph) as probes. The results indicated that microtubules in mesophyll cells, compared with the controls, would be depolymerized significantly, and dispersed randomly showing some spots or short rods in the cytoplasm, under the enhanced UV-B radiation condition. The microtubule bundles tended to be diffused, and the fluorescence intensity of that significantly decreased. The distribution pattern of microfilaments, which usually arranged parallelly in control cells, was broken up by enhanced UV-B radiation. We further investigated the distribution and morphology of microtubules in root-tip cells during every stage of cell division, and found that these aberrant phenomena of microtubules were often associated with abnormal cell division. Our findings suggested that the distribution, morphology and structure of cytoskeleton in mesophyll cells and root-tip cells of wheat seedlings would be affected by enhanced UV-B radiation, which might be related to abnormal cell division caused by enhanced UV-B radiation as an extracellular signal.
基金funded by the National Natural Science Foundation of China(32060287)the Scientific Research Fundation Project of Yunnan Provincial Department of Science and Technology,Yunnan,China(202301BD070001-014).
文摘In the present study,an indoor potting experiment was conducted to study the effects of enhanced UV-B radiation and Magnaporthe oryzae on the growth,stomatal structure,photosynthesis,and endogenous hormone contents of a traditional rice cultivar Baijiaolaojing in the Yuanyang terraces of Yunnan Province.In addition,the relationships between these parameters and disease indices were analyzed.We aimed to clarify the response of the photosynthetic physiology of rice under the combined stress of UV-B radiation and M.oryzae.Compared with the M.oryzae infection treatment,all the treatments,including M.oryzae infection before(MBR),simultaneously with(MSR),and after(MAR)UV-B radiation significantly increased the rice height and biomass by 4%–11%and 30%–111%,respectively,and the stomatal structure and carotenoids content of leaves,while decreasing the contents of chlorophyll a and b,by 21%–41%and 63%–73%,respectively.Both the MSR and MBR treatments significantly increased the photosynthetic rate and transpiration rate of rice leaves.The MAR treatment weakened chlorophyll fluorescence parameters,including the actual photosystem II(PS II)photochemical efficiency,electron transport rate,photochemical quenching,and nonphotochemical quenching by 40%,39%,43%,and 24%,respectively.Moreover,the treatments of MAR,MSR,and MBR decreased the phytohormones content and the M.oryzae disease index by 27%–62%in rice leaves.Thus,the enhanced UV-B radiation contributed to suppressing the M.oryzae infection and alleviating its damage to the photosynthesis of rice leaves.This study is valuable for the control of rice blast fungus and offers important insights into plant pathology.
文摘Transarterial radioembolization or selective internal radiation therapy(SIRT)has emerged as a minimally invasive approach for the treatment of tumors.This percutaneous technique involves the local,intra-arterial delivery of radioactive microspheres directly into the tumor.Historically employed as a palliative measure for liver malignancies,SIRT has gained traction over the past decade as a potential curative option,mirroring the increasing role of radiation segmentectomy.The latest update of the BCLC hepatocellular carcinoma guidelines recognizes SIRT as an effective treatment modality comparable to other local ablative methods,particularly well-suited for patients where surgical resection or ablation is not feasible.Radiation segmentectomy is a more selective approach,aiming to deliver high-dose radiation to one to three specific hepatic segments,while minimizing damage to surrounding healthy tissue.Future research efforts in radiation segmentectomy should prioritize optimizing radiation dosimetry and refining the technique for super-selective administration of radiospheres within the designated hepatic segments.
基金jointly supported by the National Key Research and Development Program of China(Grant No.2022YFE0106500)Jiangsu Science Fund for Distinguished Young Scholars(Grant No.BK20200040)。
文摘The pan-Arctic is confronted with air pollution transported from lower latitudes.Observations have shown that aerosols help increase plant photosynthesis through the diffuse radiation fertilization effects(DRFEs).While such DRFEs have been explored at low to middle latitudes,the aerosol impacts on pan-Arctic ecosystems and the contributions by anthropogenic and natural emission sources remain less quantified.Here,we perform regional simulations at 0.2o×0.2ousing a well-validated vegetation model(Yale Interactive terrestrial Biosphere,YIBs)in combination with multi-source of observations to quantify the impacts of aerosol DRFEs on the net primary productivity(NPP)in the pan-Arctic during 2001-19.Results show that aerosol DRFEs increase pan-Arctic NPP by 2.19 Pg C(12.8%)yr^(-1)under clear-sky conditions,in which natural and anthropogenic sources contribute to 8.9% and 3.9%,respectively.Under all-sky conditions,such DRFEs are largely dampened by cloud to only 0.26 Pg C(1.24%)yr^(-1),with contributions of 0.65% by natural and 0.59% by anthropogenic species.Natural aerosols cause a positive NPP trend of 0.022% yr^(-1)following the increased fire activities in the pan-Arctic.In contrast,anthropogenic aerosols induce a negative trend of-0.01% yr^(-1)due to reduced emissions from the middle latitudes.Such trends in aerosol DRFEs show a turning point in the year of 2007 with more positive NPP trends by natural aerosols but negative NPP trends by anthropogenic aerosols thereafter.Though affected by modeling uncertainties,this study suggests a likely increasing impact of aerosols on terrestrial ecosystems in the pan-Arctic under global warming.
基金Research of the photoelectric properties of theκ(ε)-Ga_(2)O_(3)films was supported by the Russian Science Foundation,grant number 20-79-10043-P.Fabrication of the ultraviolet detectors based on theκ(ε)-Ga_(2)O_(3)layers was supported by the grant under the Decree of the Government of the Rus-sian Federation No.220 of 09 April 2010(Agreement No.075-15-2022-1132 of 01 July 2022)Research of the structural prop-erties of theκ(ε)-Ga_(2)O_(3)was supported by the St.Petersburg State University,grant number 94034685.
文摘High-speed solar-blind short wavelength ultraviolet radiation detectors based onκ(ε)-Ga_(2)O_(3)layers with Pt contacts were demonstrated and their properties were studied in detail.Theκ(ε)-Ga_(2)O_(3)layers were deposited by the halide vapor phase epitaxy on patterned GaN templates with sapphire substrates.The spectral dependencies of the photoelectric properties of struc-tures were analyzed in the wavelength interval 200-370 nm.The maximum photo to dark current ratio,responsivity,detectiv-ity and external quantum efficiency of structures were determined as:180.86 arb.un.,3.57 A/W,1.78×10^(12) Hz^(0.5)∙cm·W^(-1) and 2193.6%,respectively,at a wavelength of 200 nm and an applied voltage of 1 V.The enhancement of the photoresponse was caused by the decrease in the Schottky barrier at the Pt/κ(ε)-Ga_(2)O_(3)interface under ultraviolet exposure.The detectors demon-strated could functionalize in self-powered mode due to built-in electric field at the Pt/κ(ε)-Ga_(2)O_(3)interface.The responsivity and external quantum efficiency of the structures at a wavelength of 254 nm and zero applied voltage were 0.9 mA/W and 0.46%,respectively.The rise and decay times in self-powered mode did not exceed 100 ms.
基金supported by the Russian Science Foundation(Grant No.18-72-10137)。
文摘Modern trends in beam-driven radiation sources include the interaction of Cherenkov wakefields in open-ended circular waveguides with complicated dielectric linings, with a three-layer dielectric capillary recently proposed to reduce radiation divergence being a representative example [Opt. Lett. 45 5416(2020)]. We present a rigorous approach that allows for an analytical description of the electromagnetic processes that occur when the structure is excited by a single waveguide TM mode. In other words, the corresponding canonical waveguide diffraction problem is solved in a rigorous formulation. This is a continuation of our previous papers which considered simpler cases with a homogeneous or two-layer dielectric filling. Here we use the same analytical approach based on the Wiener–Hopf–Fock technique and deal with the more complicated case of a three-layer dielectric lining. Using the obtained rigorous solution, we discuss the possibility of manipulating the far-field radiation pattern using a third layer made of a low permittivity material.