This work presents the application of the recently developed “Fifth-Order Comprehensive Adjoint Sensitivity Analysis Methodology for Nonlinear Systems (5<sup>th</sup>-CASAM-N)” to a simplified Bernoulli ...This work presents the application of the recently developed “Fifth-Order Comprehensive Adjoint Sensitivity Analysis Methodology for Nonlinear Systems (5<sup>th</sup>-CASAM-N)” to a simplified Bernoulli model. The 5<sup>th</sup>-CASAM-N builds upon and incorporates all of the lower-order (i.e., the first-, second-, third-, and fourth-order) adjoint sensitivities analysis methodologies. The Bernoulli model comprises a nonlinear model response, uncertain model parameters, uncertain model domain boundaries and uncertain model boundary conditions, admitting closed-form explicit expressions for the response sensitivities of all orders. Illustrating the specific mechanisms and advantages of applying the 5<sup>th</sup>-CASAM-N for the computation of the response sensitivities with respect to the uncertain parameters and boundaries reveals that the 5<sup>th</sup>-CASAM-N provides a fundamental step towards overcoming the curse of dimensionality in sensitivity and uncertainty analysis.展开更多
The platform scheduling problem in battlefield is one of the important problems in military operational research.It needs to minimize mission completing time and meanwhile maximize the mission completing accuracy with...The platform scheduling problem in battlefield is one of the important problems in military operational research.It needs to minimize mission completing time and meanwhile maximize the mission completing accuracy with a limited number of platforms.Though the traditional certain models obtain some good results,uncertain model is still needed to be introduced since the battlefield environment is complex and unstable.An uncertain model is prposed for the platform scheduling problem.Related parameters in this model are set to be fuzzy or stochastic.Due to the inherent disadvantage of the solving methods for traditional models,a new method is proposed to solve the uncertain model.Finally,the practicability and availability of the proposed method are demonstrated with a case of joint campaign.展开更多
An extended robust model predictive control approach for input constrained discrete uncertain nonlinear systems with time-delay based on a class of uncertain T-S fuzzy models that satisfy sector bound condition is pre...An extended robust model predictive control approach for input constrained discrete uncertain nonlinear systems with time-delay based on a class of uncertain T-S fuzzy models that satisfy sector bound condition is presented. In this approach, the minimization problem of the “worst-case” objective function is converted into the linear objective minimization problem in- volving linear matrix inequalities (LMIs) constraints. The state feedback control law is obtained by solving convex optimization of a set of LMIs. Sufficient condition for stability and a new upper bound on robust performance index are given for these kinds of uncertain fuzzy systems with state time-delay. Simulation results of CSTR process show that the proposed robust predictive control approach is effective and feasible.展开更多
Two non-probabilistic, set-theoretical methods for determining the maximum and minimum impulsive responses of structures to uncertain-but-bounded impulses are presented. They are, respectively, based on the theories o...Two non-probabilistic, set-theoretical methods for determining the maximum and minimum impulsive responses of structures to uncertain-but-bounded impulses are presented. They are, respectively, based on the theories of interval mathematics and convex models. The uncertain-but-bounded impulses are assumed to be a convex set, hyper-rectangle or ellipsoid. For the two non-probabilistic methods, less prior information is required about the uncertain nature of impulses than the probabilistic model. Comparisons between the interval analysis method and the convex model, which are developed as an anti-optimization problem of finding the least favorable impulsive response and the most favorable impulsive response, are made through mathematical analyses and numerical calculations. The results of this study indicate that under the condition of the interval vector being determined from an ellipsoid containing the uncertain impulses, the width of the impulsive responses predicted by the interval analysis method is larger than that by the convex model; under the condition of the ellipsoid being determined from an interval vector containing the uncertain impulses, the width of the interval impulsive responses obtained by the interval analysis method is smaller than that by the convex model.展开更多
A robust control for uncertain nonlinear systems based on T-S fuzzy model is discussed in this paper. First, a T-S fuzzy system is adopted to model the uncertain nonlinear systems. Then, for the system with input vari...A robust control for uncertain nonlinear systems based on T-S fuzzy model is discussed in this paper. First, a T-S fuzzy system is adopted to model the uncertain nonlinear systems. Then, for the system with input variables adopting standard fuzzy partitions, the efficient maximal overlapped-rules group (EMORG) is presented, and a new sufficient condition to check the stability of T-S fuzzy system with uncertainty is derived, which is expressed in terms of Linear Matrix Inequalities. The derived stability condition, which only requires a local common positive definite matrix in each EMORG, can reduce the conservatism and difficulty in existing stability conditions. Finally, a simulation example shows the proposed approach is effective.展开更多
Regarding KMV model identification credit risk profile of small and medium-sized listed companies, at present, domestic scholars has made some achievements in the process of the KMV model combined with China’s nation...Regarding KMV model identification credit risk profile of small and medium-sized listed companies, at present, domestic scholars has made some achievements in the process of the KMV model combined with China’s national conditions. In this paper, we will amend the model by using uncertain interest rate instead of fixed rate on the basis of existing research. Comparing the uncertain KMV model to traditional KMV model with ST-listed companies and non-ST-listed companies in Shanghai and Shenzhen stock exchange, we find that it performs slightly better as a predictor in uncertain KMV model and in out of sample forecasts.展开更多
This work presents the “Second-Order Comprehensive Adjoint Sensitivity Analysis Methodology (2<sup>nd</sup>-CASAM)” for the efficient and exact computation of 1<sup>st</sup>- and 2<sup>...This work presents the “Second-Order Comprehensive Adjoint Sensitivity Analysis Methodology (2<sup>nd</sup>-CASAM)” for the efficient and exact computation of 1<sup>st</sup>- and 2<sup>nd</sup>-order response sensitivities to uncertain parameters and domain boundaries of linear systems. The model’s response (<em>i.e.</em>, model result of interest) is a generic nonlinear function of the model’s forward and adjoint state functions, and also depends on the imprecisely known boundaries and model parameters. In the practically important particular case when the response is a scalar-valued functional of the forward and adjoint state functions characterizing a model comprising N parameters, the 2<sup>nd</sup>-CASAM requires a single large-scale computation using the First-Level Adjoint Sensitivity System (1<sup>st</sup>-LASS) for obtaining all of the first-order response sensitivities, and at most N large-scale computations using the Second-Level Adjoint Sensitivity System (2<sup>nd</sup>-LASS) for obtaining exactly all of the second-order response sensitivities. In contradistinction, forward other methods would require (<em>N</em>2/2 + 3 <em>N</em>/2) large-scale computations for obtaining all of the first- and second-order sensitivities. This work also shows that constructing and solving the 2<sup>nd</sup>-LASS requires very little additional effort beyond the construction of the 1<sup>st</sup>-LASS needed for computing the first-order sensitivities. Solving the equations underlying the 1<sup>st</sup>-LASS and 2<sup>nd</sup>-LASS requires the same computational solvers as needed for solving (<em>i.e.</em>, “inverting”) either the forward or the adjoint linear operators underlying the initial model. Therefore, the same computer software and “solvers” used for solving the original system of equations can also be used for solving the 1<sup>st</sup>-LASS and the 2<sup>nd</sup>-LASS. Since neither the 1<sup>st</sup>-LASS nor the 2<sup>nd</sup>-LASS involves any differentials of the operators underlying the original system, the 1<sup>st</sup>-LASS is designated as a “<u>first-level</u>” (as opposed to a “first-order”) adjoint sensitivity system, while the 2<sup>nd</sup>-LASS is designated as a “<u>second-level</u>” (rather than a “second-order”) adjoint sensitivity system. Mixed second-order response sensitivities involving boundary parameters may arise from all source terms of the 2<sup>nd</sup>-LASS that involve the imprecisely known boundary parameters. Notably, the 2<sup>nd</sup>-LASS encompasses an automatic, inherent, and independent “solution verification” mechanism of the correctness and accuracy of the 2nd-level adjoint functions needed for the efficient and exact computation of the second-order sensitivities.展开更多
In this paper, we introduce a new Control Lyapunov Function (CLF) approach for controlling the behavior of nonlinear uncertain HIV-1 models. The uncertainty is in decay parameters and also external control setting. CL...In this paper, we introduce a new Control Lyapunov Function (CLF) approach for controlling the behavior of nonlinear uncertain HIV-1 models. The uncertainty is in decay parameters and also external control setting. CLF is then applied to different strategies. One such strategy considers input into infected cells population stage and the other considers input into a virus population stage. Furthermore, by adding noise to the HIV-1 model a realistic comparison between control strategies is presented to evaluate the system’s dynamics. It has been demonstrated that nonlinear control has effectiveness and robustness, in reducing virus loading to an undetectable level.展开更多
In this paper, a fuzzy adaptive tracking control for uncertain strict-feedback nonlinear systems with unknown bounded disturbances is proposed. The generalized fuzzy hyperbolic model (GFHM) with better approximation p...In this paper, a fuzzy adaptive tracking control for uncertain strict-feedback nonlinear systems with unknown bounded disturbances is proposed. The generalized fuzzy hyperbolic model (GFHM) with better approximation performance is used to approximate the unknown nonlinear function in the system. The dynamic surface control (DSC) is used to design the controller, which not only avoids the “explosion of complexity” problem in the process of repeated derivation, but also makes the control system simpler in structure and lower in computational cost because only one adaptive law is designed in the controller design process. Through the Lyapunov stability analysis, all signals in the closed loop system designed in this paper are semi-globally uniformly ultimately bounded (SGUUB). Finally, the effectiveness of the method is verified by a simulation example.展开更多
Land scarcity has become the prominent obstacle on the way to sustainable development for China. Under the constraints of land shortage, how to allocate the finite land resources to the multiple land users in China co...Land scarcity has become the prominent obstacle on the way to sustainable development for China. Under the constraints of land shortage, how to allocate the finite land resources to the multiple land users in China considering various political, environmental, ecological and economic conditions have become research topics with great significance. In this study, an interval fuzzy national-scale land-use model(IFNLM) was developed for optimizing land systems of China. IFNLM is based on an integration of existing interval linear programming(ILP), and fuzzy flexible programming(FFP) techniques. IFNLM allows uncertainties expressed as discrete interval values and fuzzy sets to be incorporated within a general optimization framework. It can also facilitate national-scale land-use planning under various environmental, ecological, social conditions within a multi-period and multi-option context. Then, IFNLM was applied to a real case study of land-use planning in China. The satisfaction degree of environmental constraints is between 0.69 and 0.97, the system benefit will between 198.25 × 1012 USD and 229.67 × 1012 USD. The results indicated that the hybrid model can help generate desired policies for land-use allocation with a maximized economic benefit and minimized environmental violation risk. Optimized land-use allocation patterns can be generated from the proposed IFNLM.展开更多
An optimal control procedure is developed for the front and rear wheels of a three-axle vehicle moving on a complex typical road based on model following variable structure control strategy. The actual vehicle may be ...An optimal control procedure is developed for the front and rear wheels of a three-axle vehicle moving on a complex typical road based on model following variable structure control strategy. The actual vehicle may be considered as an uncertain system. Cornering stiffness of front and rear wheels and external disturbances are varied in a limited range. The model-following variable structure control method is used to control both front and rear wheels steering operations of the vehicle, so that steering responses of the vehicle follow from those of the reference model. By numerical results obtained from computer simulation, it is demonstrated that the control system model can cope with the effects of parameter perturbations and outside disturbances.展开更多
城市雨洪模型是研究城市内涝形成规律及演进过程的重要手段,但在我国城市化进程加速、雨水内涝监测能力不足的背景下,模型参数率定和应用面临挑战。为解决缺乏实测雨洪数据条件下城市雨洪模型参数校准的难题,本文提出了根据地理和气候...城市雨洪模型是研究城市内涝形成规律及演进过程的重要手段,但在我国城市化进程加速、雨水内涝监测能力不足的背景下,模型参数率定和应用面临挑战。为解决缺乏实测雨洪数据条件下城市雨洪模型参数校准的难题,本文提出了根据地理和气候特征计算雨水径流量的动态径流系数法和基于城市功能区的Storm Water Management Model(SWMM)参数率定方法。在福建省三明市的应用表明:动态径流系数法与规范和经验公式结果一致,与传统方法相比则能反映降雨产流随雨强、下渗等因素变化的规律,更符合城市降雨产流的实际过程。基于城市功能区的参数率定方法结果与研究区城市化水平和下垫面特征相符。率定后雨水径流过程NSE值达到0.80,雨水总径流量误差处于6%以内,洪峰时间误差小于3分钟。本文提出的方法可为缺乏实测雨洪数据地区的城市雨洪模拟提供参考。展开更多
文摘This work presents the application of the recently developed “Fifth-Order Comprehensive Adjoint Sensitivity Analysis Methodology for Nonlinear Systems (5<sup>th</sup>-CASAM-N)” to a simplified Bernoulli model. The 5<sup>th</sup>-CASAM-N builds upon and incorporates all of the lower-order (i.e., the first-, second-, third-, and fourth-order) adjoint sensitivities analysis methodologies. The Bernoulli model comprises a nonlinear model response, uncertain model parameters, uncertain model domain boundaries and uncertain model boundary conditions, admitting closed-form explicit expressions for the response sensitivities of all orders. Illustrating the specific mechanisms and advantages of applying the 5<sup>th</sup>-CASAM-N for the computation of the response sensitivities with respect to the uncertain parameters and boundaries reveals that the 5<sup>th</sup>-CASAM-N provides a fundamental step towards overcoming the curse of dimensionality in sensitivity and uncertainty analysis.
基金supported by the National Natural Science Foundation of China(61573017)
文摘The platform scheduling problem in battlefield is one of the important problems in military operational research.It needs to minimize mission completing time and meanwhile maximize the mission completing accuracy with a limited number of platforms.Though the traditional certain models obtain some good results,uncertain model is still needed to be introduced since the battlefield environment is complex and unstable.An uncertain model is prposed for the platform scheduling problem.Related parameters in this model are set to be fuzzy or stochastic.Due to the inherent disadvantage of the solving methods for traditional models,a new method is proposed to solve the uncertain model.Finally,the practicability and availability of the proposed method are demonstrated with a case of joint campaign.
基金Project (No. 60421002) supported by the National Natural ScienceFoundation of China
文摘An extended robust model predictive control approach for input constrained discrete uncertain nonlinear systems with time-delay based on a class of uncertain T-S fuzzy models that satisfy sector bound condition is presented. In this approach, the minimization problem of the “worst-case” objective function is converted into the linear objective minimization problem in- volving linear matrix inequalities (LMIs) constraints. The state feedback control law is obtained by solving convex optimization of a set of LMIs. Sufficient condition for stability and a new upper bound on robust performance index are given for these kinds of uncertain fuzzy systems with state time-delay. Simulation results of CSTR process show that the proposed robust predictive control approach is effective and feasible.
基金The project supported by the National Outstanding Youth Science Foundation of China (10425208)the National Natural Science Foundation of ChinaInstitute of Engineering Physics of China (10376002) The English text was polished by Keren Wang
文摘Two non-probabilistic, set-theoretical methods for determining the maximum and minimum impulsive responses of structures to uncertain-but-bounded impulses are presented. They are, respectively, based on the theories of interval mathematics and convex models. The uncertain-but-bounded impulses are assumed to be a convex set, hyper-rectangle or ellipsoid. For the two non-probabilistic methods, less prior information is required about the uncertain nature of impulses than the probabilistic model. Comparisons between the interval analysis method and the convex model, which are developed as an anti-optimization problem of finding the least favorable impulsive response and the most favorable impulsive response, are made through mathematical analyses and numerical calculations. The results of this study indicate that under the condition of the interval vector being determined from an ellipsoid containing the uncertain impulses, the width of the impulsive responses predicted by the interval analysis method is larger than that by the convex model; under the condition of the ellipsoid being determined from an interval vector containing the uncertain impulses, the width of the interval impulsive responses obtained by the interval analysis method is smaller than that by the convex model.
基金supported by the National Natural Science Foundation of China (No.70471087)China Postdoctoral Science Foundation Funded Project(No.20080430929)Liaoning Province Education Bureau Foundation (No.20060106)
文摘A robust control for uncertain nonlinear systems based on T-S fuzzy model is discussed in this paper. First, a T-S fuzzy system is adopted to model the uncertain nonlinear systems. Then, for the system with input variables adopting standard fuzzy partitions, the efficient maximal overlapped-rules group (EMORG) is presented, and a new sufficient condition to check the stability of T-S fuzzy system with uncertainty is derived, which is expressed in terms of Linear Matrix Inequalities. The derived stability condition, which only requires a local common positive definite matrix in each EMORG, can reduce the conservatism and difficulty in existing stability conditions. Finally, a simulation example shows the proposed approach is effective.
文摘Regarding KMV model identification credit risk profile of small and medium-sized listed companies, at present, domestic scholars has made some achievements in the process of the KMV model combined with China’s national conditions. In this paper, we will amend the model by using uncertain interest rate instead of fixed rate on the basis of existing research. Comparing the uncertain KMV model to traditional KMV model with ST-listed companies and non-ST-listed companies in Shanghai and Shenzhen stock exchange, we find that it performs slightly better as a predictor in uncertain KMV model and in out of sample forecasts.
文摘This work presents the “Second-Order Comprehensive Adjoint Sensitivity Analysis Methodology (2<sup>nd</sup>-CASAM)” for the efficient and exact computation of 1<sup>st</sup>- and 2<sup>nd</sup>-order response sensitivities to uncertain parameters and domain boundaries of linear systems. The model’s response (<em>i.e.</em>, model result of interest) is a generic nonlinear function of the model’s forward and adjoint state functions, and also depends on the imprecisely known boundaries and model parameters. In the practically important particular case when the response is a scalar-valued functional of the forward and adjoint state functions characterizing a model comprising N parameters, the 2<sup>nd</sup>-CASAM requires a single large-scale computation using the First-Level Adjoint Sensitivity System (1<sup>st</sup>-LASS) for obtaining all of the first-order response sensitivities, and at most N large-scale computations using the Second-Level Adjoint Sensitivity System (2<sup>nd</sup>-LASS) for obtaining exactly all of the second-order response sensitivities. In contradistinction, forward other methods would require (<em>N</em>2/2 + 3 <em>N</em>/2) large-scale computations for obtaining all of the first- and second-order sensitivities. This work also shows that constructing and solving the 2<sup>nd</sup>-LASS requires very little additional effort beyond the construction of the 1<sup>st</sup>-LASS needed for computing the first-order sensitivities. Solving the equations underlying the 1<sup>st</sup>-LASS and 2<sup>nd</sup>-LASS requires the same computational solvers as needed for solving (<em>i.e.</em>, “inverting”) either the forward or the adjoint linear operators underlying the initial model. Therefore, the same computer software and “solvers” used for solving the original system of equations can also be used for solving the 1<sup>st</sup>-LASS and the 2<sup>nd</sup>-LASS. Since neither the 1<sup>st</sup>-LASS nor the 2<sup>nd</sup>-LASS involves any differentials of the operators underlying the original system, the 1<sup>st</sup>-LASS is designated as a “<u>first-level</u>” (as opposed to a “first-order”) adjoint sensitivity system, while the 2<sup>nd</sup>-LASS is designated as a “<u>second-level</u>” (rather than a “second-order”) adjoint sensitivity system. Mixed second-order response sensitivities involving boundary parameters may arise from all source terms of the 2<sup>nd</sup>-LASS that involve the imprecisely known boundary parameters. Notably, the 2<sup>nd</sup>-LASS encompasses an automatic, inherent, and independent “solution verification” mechanism of the correctness and accuracy of the 2nd-level adjoint functions needed for the efficient and exact computation of the second-order sensitivities.
文摘In this paper, we introduce a new Control Lyapunov Function (CLF) approach for controlling the behavior of nonlinear uncertain HIV-1 models. The uncertainty is in decay parameters and also external control setting. CLF is then applied to different strategies. One such strategy considers input into infected cells population stage and the other considers input into a virus population stage. Furthermore, by adding noise to the HIV-1 model a realistic comparison between control strategies is presented to evaluate the system’s dynamics. It has been demonstrated that nonlinear control has effectiveness and robustness, in reducing virus loading to an undetectable level.
文摘In this paper, a fuzzy adaptive tracking control for uncertain strict-feedback nonlinear systems with unknown bounded disturbances is proposed. The generalized fuzzy hyperbolic model (GFHM) with better approximation performance is used to approximate the unknown nonlinear function in the system. The dynamic surface control (DSC) is used to design the controller, which not only avoids the “explosion of complexity” problem in the process of repeated derivation, but also makes the control system simpler in structure and lower in computational cost because only one adaptive law is designed in the controller design process. Through the Lyapunov stability analysis, all signals in the closed loop system designed in this paper are semi-globally uniformly ultimately bounded (SGUUB). Finally, the effectiveness of the method is verified by a simulation example.
基金Under the auspices of National Natural Science Foundation of China(No.41201164)Humanities and Social Science Research Planning Fund,Ministry of Education of China(No.12YJCZH299)
文摘Land scarcity has become the prominent obstacle on the way to sustainable development for China. Under the constraints of land shortage, how to allocate the finite land resources to the multiple land users in China considering various political, environmental, ecological and economic conditions have become research topics with great significance. In this study, an interval fuzzy national-scale land-use model(IFNLM) was developed for optimizing land systems of China. IFNLM is based on an integration of existing interval linear programming(ILP), and fuzzy flexible programming(FFP) techniques. IFNLM allows uncertainties expressed as discrete interval values and fuzzy sets to be incorporated within a general optimization framework. It can also facilitate national-scale land-use planning under various environmental, ecological, social conditions within a multi-period and multi-option context. Then, IFNLM was applied to a real case study of land-use planning in China. The satisfaction degree of environmental constraints is between 0.69 and 0.97, the system benefit will between 198.25 × 1012 USD and 229.67 × 1012 USD. The results indicated that the hybrid model can help generate desired policies for land-use allocation with a maximized economic benefit and minimized environmental violation risk. Optimized land-use allocation patterns can be generated from the proposed IFNLM.
文摘An optimal control procedure is developed for the front and rear wheels of a three-axle vehicle moving on a complex typical road based on model following variable structure control strategy. The actual vehicle may be considered as an uncertain system. Cornering stiffness of front and rear wheels and external disturbances are varied in a limited range. The model-following variable structure control method is used to control both front and rear wheels steering operations of the vehicle, so that steering responses of the vehicle follow from those of the reference model. By numerical results obtained from computer simulation, it is demonstrated that the control system model can cope with the effects of parameter perturbations and outside disturbances.
文摘城市雨洪模型是研究城市内涝形成规律及演进过程的重要手段,但在我国城市化进程加速、雨水内涝监测能力不足的背景下,模型参数率定和应用面临挑战。为解决缺乏实测雨洪数据条件下城市雨洪模型参数校准的难题,本文提出了根据地理和气候特征计算雨水径流量的动态径流系数法和基于城市功能区的Storm Water Management Model(SWMM)参数率定方法。在福建省三明市的应用表明:动态径流系数法与规范和经验公式结果一致,与传统方法相比则能反映降雨产流随雨强、下渗等因素变化的规律,更符合城市降雨产流的实际过程。基于城市功能区的参数率定方法结果与研究区城市化水平和下垫面特征相符。率定后雨水径流过程NSE值达到0.80,雨水总径流量误差处于6%以内,洪峰时间误差小于3分钟。本文提出的方法可为缺乏实测雨洪数据地区的城市雨洪模拟提供参考。