While sufficient review articles exist on inductive short-range wireless power transfer(WPT),long-haul microwave WPT(MWPT)for solar power satellites,and ambient microwave wireless energy harvesting(MWEH)in urban areas...While sufficient review articles exist on inductive short-range wireless power transfer(WPT),long-haul microwave WPT(MWPT)for solar power satellites,and ambient microwave wireless energy harvesting(MWEH)in urban areas,few studies focus on the fundamental modeling and related design automation of receiver systems.This article reviews the development of MWPT and MWEH receivers,with a focus on rectenna design automation.A novel rectifier model capable of accurately modeling the rectification process under both high and low input power is presented.The model reveals the theoretical boundary of radio frequency-to-direct current(dc)power conversion efficiency and,most importantly,enables an automated system design.The automated rectenna design flow is sequential,with the minimal engagement of iterative optimization.It covers the design automation of every module(i.e.,rectifiers,matching circuits,antennae,and dc–dc converters).Scaling-up of the technique to large rectenna arrays is also possible,where the challenges in array partitioning and power combining are briefly discussed.In addition,several cutting-edge rectenna techniques for MWPT and MWEH are reviewed,including the dynamic range extension technique,the harmonics-based retro-directive technique,and the simultaneous wireless information and power transfer technique,which can be good complements to the presented automated design methodology.展开更多
The discovery and large-scale exploration of unconventional oil/gas resources since 1980s have been considered as the most important advancement in the history of petroleum geology;that has not only changed the balanc...The discovery and large-scale exploration of unconventional oil/gas resources since 1980s have been considered as the most important advancement in the history of petroleum geology;that has not only changed the balance of supply and demand in the global energy market,but also improved our understanding of the formation mechanisms and distribution characteristics of oil/gas reservoirs.However,what is the difference of conventional and unconventional resources and why they always related to each other in petroliferous basins is not clear.As the differences and correlations between unconventional and conventional resources are complex challenging issues and very critical for resources assessment and hydrocarbon exploration,this paper focused on studying the relationship of formations and distributions among different oil/gas reservoirs.Drilling results of 12,237 exploratory wells in 6 representative petroliferous basins of China and distribution characteristics for 52,926 oil/gas accumulations over the world were applied to clarify the formation conditions and genetic relations of different oil/gas reservoirs in a petroliferous basin,and then to establish a unified model to address the differences and correlations of conventional and unconventional reservoirs.In this model,conventional reservoirs formed in free hydrocarbon dynamic field with high porosity and permeability located above the boundary of hydrocarbon buoyancy-driven accumulation depth limit.Unconventional tight reservoirs formed in confined hydrocarbon dynamic field with low porosity and permeability located between hydrocarbon buoyancy-driven accumulation depth limit and hydrocarbon accumulation depth limit.Shale oil/gas reservoirs formed in the bound hydrocarbon dynamic field with low porosity and ultra-low permeability within the source rock layers.More than 75%of proved reserves around the world are discovered in the free hydrocarbon dynamic field,which is estimated to contain only 10%of originally generated hydrocarbons.Most of undiscovered resources distributed in the confined hydrocarbon dynamic field and the bound hydrocarbon dynamic field,which contains 90%of original generated hydrocarbons,implying a reasonable and promising area for future hydrocarbon explorations.The buried depths of hydrocarbon dynamic fields become shallow with the increase of heat flow,and the remaining oil/gas resources mainly exist in the deep area of“cold basin”with low geothermal gradient.Lithology changing in the hydrocarbon dynamic field causes local anomalies in the oil/gas dynamic mechanism,leading to the local formation of unconventional hydrocarbon reservoirs in the free hydrocarbon dynamic field or the occurrence of oil/gas enrichment sweet points with high porosity and permeability in the confined hydrocarbon dynamic field.The tectonic movements destroy the medium conditions and oil/gas components,which leads to the transformation of conventional oil/gas reservoirs formed in free hydrocarbon dynamic field to unconventional ones or unconventional ones formed in confined and bound hydrocarbon dynamic fields to conventional ones.展开更多
The UK Met Office Unified Model(UM) is employed by many weather forecasting agencies around the globe. This model is designed to run across spatial and time scales and known to produce skillful predictions for large...The UK Met Office Unified Model(UM) is employed by many weather forecasting agencies around the globe. This model is designed to run across spatial and time scales and known to produce skillful predictions for large-scale weather systems. However, the model has only recently begun running operationally at horizontal grid spacings of ~1.5 km [e.g.,at the UK Met Office and the Korea Meteorological Administration(KMA)]. As its microphysics scheme was originally designed and tuned for large-scale precipitation systems, we investigate the performance of UM microphysics to determine potential inherent biases or weaknesses. Two rainfall cases from the KMA forecasting system are considered in this study: a Changma(quasi-stationary) front, and Typhoon Sanba(2012). The UM output is compared to polarimetric radar observations in terms of simulated polarimetric radar variables. Results show that the UM generally underpredicts median reflectivity in stratiform rain, producing high reflectivity cores and precipitation gaps between them. This is partially due to the diagnostic rain intercept parameter formulation used in the one-moment microphysics scheme. Model drop size is generally both underand overpredicted compared to observations. UM frozen hydrometeors favor generic ice(crystals and snow) rather than graupel, which is reasonable for Changma and typhoon cases. The model performed best with the typhoon case in terms of simulated precipitation coverage.展开更多
This paper deduces a kinetic model for microbial degradation of pesticides in soils:where x is the concentration of pesticide at time t, so the initial concentration of the pesticide, me the initial number of pesticid...This paper deduces a kinetic model for microbial degradation of pesticides in soils:where x is the concentration of pesticide at time t, so the initial concentration of the pesticide, me the initial number of pesticide-degrading microorganisms, M the carrying capacity for the microorganisms, μ the specific growth rate of the microorganisms, and k the rate constant for the pesticide degradation.In periodic applications of pesticides, this model can be used to continuously describe every degradation curve. Whether a lag phase occurs or not, we can obtain the minimum residue of the pesticide (xe):xe=xdexp(-kMr)/[1-exp(-ker) ]where r is the regular time internals between applications, and xd the dosage of the pesticide.展开更多
For the interaction relation between geological object and engineering object in some fields related to water conservancy and hydropower, a unified modeling idea was proposed. On the basis of summarizing both advantag...For the interaction relation between geological object and engineering object in some fields related to water conservancy and hydropower, a unified modeling idea was proposed. On the basis of summarizing both advantages and disadvantages of existing modeling methods, an automatic unified modeling method of both engineering and geological objects based on tri-prism(TP) model was presented. Through the lossless correction algorithm of deviated drill holes contained in this method, the real deviated drill holes could be corrected into the equivalent virtual vertical ones. And the correction accuracy fully meets the requirements of unified modeling. With the virtual vertical drilling data, TIN construction of both cover layer and other stratums would be built in order to obtain the 3D geological model. Then, the engineering design data would be introduced into the 3D geological model for achieving unified modeling. For this process, the volume subdividing and restructuring principles were introduced to deal with the spatial relationships between engineering object and geological object. In order to improve the efficiency of unified modeling, the reconstruction of TIN based on constraint information was also applied in this method. At last, the feasibility and validation of the unified modeling method as well as its relevant key algorithms were verified by specific experiments and analysis of results.展开更多
We have compiled a sample of two subsets of AGN selected from their optical and X ray data. The first subset was selected for very broad and/or peculiar optical emission line profiles, the second for a high X ray flux...We have compiled a sample of two subsets of AGN selected from their optical and X ray data. The first subset was selected for very broad and/or peculiar optical emission line profiles, the second for a high X ray flux. Here we will discuss properties of these galaxies and show that both subsets are very similar in the multi wavelength view. Furthermore, we will discuss differences between the two subsets and their implications for a Unified Model of AGN.展开更多
In this paper: 1. The assumption of the dependence of Doppler factor on the emission frequency (δ v≈δ 0 18logvv o , Fan et al. 1993, ApJ., 415, 113) is used to explain the observational differences between the radi...In this paper: 1. The assumption of the dependence of Doppler factor on the emission frequency (δ v≈δ 0 18logvv o , Fan et al. 1993, ApJ., 415, 113) is used to explain the observational differences between the radio selected BL Lac objects (RBLs) and the X Ray Selected BL lac objects (XBLs): a) Hubble relation; b) different multiwavelength correlations; c) different regions in the effective spectral index (α RO - α OX ) diagram; d) different polarization. The results suggest that RBLs and XBLs are the same. 2. From the analysis of the relation between infrared magnitude and redshift, it is proposed that the parent population of BL Lac objects should be FRI radio galaxies and FRII(G) radio galaxies showing the optical spectra of a galaxy. 3. From the superluminal motion, the assumption (δ v≈δ 0 18+logvv 0 ) is confirmed. 4. Based on the relation between polarization and Doppler factor (Fan et al. 1997a), it is proposed that the f, ratio of the beamed luminosity to the unbeamed luminosity in the source frame of OVVs/HPQs is smaller than that of BL Lac objects: f RBLs ~ 6f FSRQs .展开更多
To solve the problem that external systematic errors of the optical camera cannot be fully estimated due to limited computing resources,a unified dimensionality reduction representation method for the external systema...To solve the problem that external systematic errors of the optical camera cannot be fully estimated due to limited computing resources,a unified dimensionality reduction representation method for the external systematic errors of the optical camera is proposed,and autonomous relative optical navigation is realized.The camera translational and misalignment errors are converted into a three-dimensional rotation error,whose differential model can be established through specific attitude control and appropriate assumption.Then,the rotation error and the relative motion state are jointly estimated in an augmented Kalman filter framework.Compared with the traditional method that estimates the camera translational and misalignment errors,the proposed method reduces the computational complexity in that the estimated state dimension is reduced.Furthermore,as demonstrated by numerical simulation,the estimation accuracy is improved significantly.展开更多
This research paper defines the theoretical foundations and computational implementation of a non-conventional modeling and simulation methodology,inspired by the needs of problem solving for biological,agricultural,a...This research paper defines the theoretical foundations and computational implementation of a non-conventional modeling and simulation methodology,inspired by the needs of problem solving for biological,agricultural,aquacultural and environmental systems.The challenging practical problem is to develop a framework for automatic generation of causally right and balance-based,unified models that can also be applied for the effective coupling amongst the various(sophisticated field-specific,sensor data processing-based,upper level optimization-driven,etc.)models.The scientific problem addressed in this innovation is to develop Programmable Process Structures(PPS)by combining functional basis of systems theory,structural approach of net theory and computational principles of agent based modeling.PPS offers a novel framework for the automatic generation of easily extensible and connectible,unified models for the underlying complex systems.PPS models can be generated from one state and one transition meta-prototypes and from the transition oriented description of process structure.The models consist of unified state and transition elements.The local program containing prototype elements,derived also from the meta-prototypes,are responsible for the case-specific calculations.The integrity and consistency of PPS architecture are based on the meta-prototypes,prepared to distinguish between the conservation-laws-based measures and the signals.The simulation is based on data flows amongst the state and transition elements,as well as on the unification based data transfer between these elements and their calculating prototypes.This architecture and its AI language-based(Prolog)implementation support the integration of various field-and task-specific models,conveniently.The better understanding is helped by a simple example.The capabilities of the recently consolidated general methodology are discussed on the basis of some preliminary applications,focusing on the recently studied agricultural and aquacultural cases.展开更多
The prediction of fundus fluorescein angiography(FFA)images from fundus structural images is a cutting-edge research topic in ophthalmological image processing.Prediction comprises estimating FFA from fundus camera im...The prediction of fundus fluorescein angiography(FFA)images from fundus structural images is a cutting-edge research topic in ophthalmological image processing.Prediction comprises estimating FFA from fundus camera imaging,single-phase FFA from scanning laser ophthalmoscopy(SLO),and three-phase FFA also from SLO.Although many deep learning models are available,a single model can only perform one or two of these prediction tasks.To accomplish three prediction tasks using a unified method,we propose a unified deep learning model for predicting FFA images from fundus structure images using a supervised generative adversarial network.The three prediction tasks are processed as follows:data preparation,network training under FFA supervision,and FFA image prediction from fundus structure images on a test set.By comparing the FFA images predicted by our model,pix2pix,and CycleGAN,we demonstrate the remarkable progress achieved by our proposal.The high performance of our model is validated in terms of the peak signal-to-noise ratio,structural similarity index,and mean squared error.展开更多
An accurate and operational bidirectional reflectance distribution function (BDRF) canopy model is the basis of quantitative vegetation remote sensing. The canopy reflectance should be approximated as the sum of the...An accurate and operational bidirectional reflectance distribution function (BDRF) canopy model is the basis of quantitative vegetation remote sensing. The canopy reflectance should be approximated as the sum of the single scattering reflectance arising from the sun, pl, and the multiple scattering reflectance arising from the canopy, fin, as their directional characteristics are dramatically different. Based on the existing BRDF model, we obtain a new analytical expression of ρ1 and ρm in this paper, which is suitable for different illumination conditions and different vegetation canopies. According to the geometrical optic model at the leaf scale, the anisotropy of ρ1 can be ascribed to the geometry of the object, sun and the sensor, multiple scale clumping, and the fraction of direct solar radiation and diffuse sky radiation. Then, we parameterize the area ratios of four components: the sunlit foliage, sunlit ground, shadow foliage and shadow ground based on a Poisson distribution, and develop a new approximate analytical single scattering reflectance model. Assuming G=0.5, a recollision probability theory based scattering model is developed which considers the effects of diffuse sky radiation, scattering inside the canopy and rebounds between the canopy and soil. Validation using ground measurements of maize and black spruce forest proves the reliability of the model.展开更多
The unified modeling language(UML) is one of the most commonly used modeling languages in the software industry.It simplifies the complex process of design by providing a set of graphical notations,which helps express...The unified modeling language(UML) is one of the most commonly used modeling languages in the software industry.It simplifies the complex process of design by providing a set of graphical notations,which helps express the objectoriented analysis and design of software projects.Although UML is applicable to different types of systems,domains,methods,and processes,it cannot express certain problem domain needs.Therefore,many extensions to UML have been proposed.In this paper,we propose a framework for integrating the UML extensions and then use the framework to propose an integrated unified modeling language-graphical(iUML-g) form.iUML-g integrates the existing UML extensions into one integrated form.This includes an integrated diagram for UML class,sequence,and use case diagrams.The proposed approach is evaluated using a case study.The proposed iUML-g is capable of modeling systems that use different domains.展开更多
Human faces have two important characteristics: (1) They are similar objectsand the specific variations of each face are similar to each other; (2) They are nearly bilateralsymmetric. Exploiting the two important prop...Human faces have two important characteristics: (1) They are similar objectsand the specific variations of each face are similar to each other; (2) They are nearly bilateralsymmetric. Exploiting the two important properties, we build a unified model in identity subspace(UMIS) as a novel technique for face recognition from only one example image per person. An identitysubspace spanned by bilateral symmetric bases, which compactly encodes identity information, ispresented. The unified model, trained on an obtained training set with multiple samples per classfrom a known people group A, can be generalized well to facial images of unknown individuals, andcan be used to recognize facial images from an unknown people group B with only one sample persubject, Extensive experimental results on two public databases (the Yale database and the Berndatabase) and our own database (the ICT-JDL database) demonstrate that the UMIS approach issignificantly effective and robust for face recognition.展开更多
Cyber physical systems (CPSs) can be found nowadays in various fields of activity. The increased interest for these systems as evidenced by the large number of applications led to complex research regarding the most s...Cyber physical systems (CPSs) can be found nowadays in various fields of activity. The increased interest for these systems as evidenced by the large number of applications led to complex research regarding the most suitable methods for design and development. A promising solution for specification, visualization, and documentation of CPSs uses the Object Management Group (OMG) unified modeling language (UML). UML models allow an intuitive approach for embedded systems design, helping end-users to specify the requirements. However, the UML models are represented in an informal language. Therefore, it is difficult to verify the correctness and completeness of a system design. The object constraint language (OCL) was defined to add constraints to UML, but it is deficient in strict notations of mathematics and logic that permits rigorous analysis and reasoning about the specifications. In this paper, we investigated how CPS applications modeled using UML deployment diagrams could be formally expressed and verified. We used Z language constructs and prototype verification system (PVS) as formal verification tools. Considering some relevant case studies presented in the literature, we investigated the opportunity of using this approach for validation of static properties in CPS UML models.展开更多
A unified model is based on a generalized gauge symmetry with groups [Sg3c]color×(SU2×U1)X[U1b×U11]. It implies that all interactions should preserve conservation laws of baryon number, lepton number,...A unified model is based on a generalized gauge symmetry with groups [Sg3c]color×(SU2×U1)X[U1b×U11]. It implies that all interactions should preserve conservation laws of baryon number, lepton number, and electric charge, etc. The baryonie U1b, leptonie U11 and color SU3o gauge transformations are generalized to involve nonintegrable phase factors. One has gauge invariant fourth-order equations for massless gauge fields, which leads to linear potentials in the [U1b × U11] and color [SUao] sectors. We discuss possible cosmological implications of the new baryonie gauge field. It can produce a very small constant repulsive force between two baryon galaxies (or between two anti-baryon galaxies), where the baryon force can overcome the gravitational force at very large distances and leads to an accelerated cosmic expansion. Based on conservation laws in the unified model, we discuss a simple rotating dumbbell universe with equal amounts of matter and anti-matter, which may be pictured as two gigantic rotating clusters of galaxies. Within the gigantic baryonie cluster, a galaxy will have an approximately linearly accelerated expansion due to the effective force of constant density of all baryonie matter. The same expansion happens in the gigantic anti-baryonic cluster. Physical implications of the generalized gauge symmetry on charmonium confining potentials due to new SUac field equations, frequency shift of distant supernovae Ia and their experimental tests are discussed.展开更多
Fibre-reinforced polymer(FRP)has the advantages of high strength,light weight,corrosion resistance and convenient construction and is widely used in repairing and strengthening damaged concrete columns.Most of the exi...Fibre-reinforced polymer(FRP)has the advantages of high strength,light weight,corrosion resistance and convenient construction and is widely used in repairing and strengthening damaged concrete columns.Most of the existing strength models were built by regression analysis of experimental data;however,in this article,a new unified strength model is proposed using the Hoek-Brown failure criterion.To study the strength of FRP-confined damaged and undamaged concrete columns,900 test data were collected from the published literature and a large database that contains the cross-sectional shape of each specimen,the damage type,the damage level and the FRP-confined stiffness was established.A new strength model using the Hoek-Brown failure criterion was established and is suitable for both circular and square columns that are undamaged,load-damaged and fire-damaged.Based on the database,most of the existing strength models from the published literature and the model proposed in this paper were evaluated.The evaluation shows that the proposed model can predict the compressive strength for FRP-confined pre-damaged and undamaged concrete columns with good accuracy.展开更多
Based on six thermodynamic equilibria,a unified retention model of solute in liquid chromatography(LC)is first proposed.The unified model was tested and proved to be valid for a LC sys- tem with mobile phase consistin...Based on six thermodynamic equilibria,a unified retention model of solute in liquid chromatography(LC)is first proposed.The unified model was tested and proved to be valid for a LC sys- tem with mobile phase consisting of a complete range of multiple,ternary or binary components and each kind of LC except size exclusion chromatography.In addition,so long as making some assumptions and mathematical conversions,the expressions of various popular models in LC can be derived by using the unified model.展开更多
Understanding the behavior of urban air pollution is important en route for sustainable urban development (SUD). Malaysia is on its mission to be a developed country by year 2020 comprehends dealing with air pollution...Understanding the behavior of urban air pollution is important en route for sustainable urban development (SUD). Malaysia is on its mission to be a developed country by year 2020 comprehends dealing with air pollution is one of the indicators headed towards it. At present monitoring and managing air pollution in urban areas encompasses sophisticated air quality modeling and data acquisition. However, rapid developments in major cities cause difficulties in acquiring the city geometries. The existing method in acquiring city geometries data via ground or space measurement inspection such as field survey, photogrammetry, laser scanning, remote sensing or using architectural plans appears not to be practical because of its cost and efforts. Moreover, air monitoring stations deployed are intended for regional to global scale model whereby it is not accurate for urban areas with typical resolution of less than 2 km. Furthermore in urban areas, the pollutant dispersion movements are trapped between buildings initiating it to move vertically causing visualization complications which imply the limitations of existing visualization scheme that is based on two-dimensional (2D) framework. Therefore this paper aims is to perform groundwork assessment and discuss on the current scenario in Malaysia in the aspect of current policies towards SUD, air quality monitoring stations, scale model and detail discussion on air pollution dispersion model used called the Operational Street Pollution Model (OSPM). This research proposed the implementation of three-dimensional (3D) spatial city model as a new physical data input for OSPM. The five Level of Details (LOD) of 3D spatial city model shows the scale applicability for the dispersion model implementtation. Subsequently 3D spatial city model data commonly available on the web, by having a unified data model shows the advantages in easy data acquisition, 3D visualization of air pollution dispersion and improves visual analysis of air quality monitoring in urban areas.展开更多
Polarized magnetic system has a series of features, such as small volume, light weight, low power consumption, high sensitivity, quick movement and so on, widely used in the products of the military aerospace electrom...Polarized magnetic system has a series of features, such as small volume, light weight, low power consumption, high sensitivity, quick movement and so on, widely used in the products of the military aerospace electromagnetic relay. The typical polarized magnetic system has mainly four structures and its simplified equivalent magnetic circuits model is the base of the design of the electromagnetic relay with permanent magnet. In the past, the analysis method that people used was difficult to build the unified mathematical models, which divided the work gap magnetic flux into "permanent magnet flux" and "electromagnetic flux". Based on the analysis method of the work gap magnetic voltage, this paper founds the unified mathematical model of the polarized magnetic system and divides the attractive torque into permanent magnet torque, polarized torque and electromagnetic torque through the energy balance formula. It analyses the influence of permanent magnet sizes on permanent magnet torque, polarized torque and electromagnetic torque through the energy balance formula and the conclusions can direct the design of aerospace electromagnetic relay with permanent magnet.展开更多
Traditional model for calculating performance parameters of a fix-pad journal bearing leads to heavy workload, complicated and changeable formulae as it requires deriving various geometric formulae with different bear...Traditional model for calculating performance parameters of a fix-pad journal bearing leads to heavy workload, complicated and changeable formulae as it requires deriving various geometric formulae with different bearing types such as circular journal bearing, dislocated bearing and elliptic bearing. Considering different pad preload ratios for non-standard bearing, traditional model not only becomes more complicated but also reduces scalability and promotion of the calculation programs. For the complexly case of traditional model while dealing with various fix-pad journal bearings, unified coordinate system model for performance calculation of fix-pad journal bearing is presented in the paper. A unified coordinate system with the bearing center at the origin is established, and the eccentricity ratio and attitude angle of axis relative to each pad are calculated through the coordinates of journal center and each pad center. Geometric description of fix-pad journal bearing is unified in this model, which can be used for both various standard bearing and non-standard bearing with different pad preload ratios. Validity of this model is verified with an elliptical bearing. Performance of a non-standard four-leaf bearing with different pad preload ratios is calculated based on this model. The calculation result shows that increasing preload ratio of the pad 1 and keeping that of the left three pads constant improves bearing capacity, stiffness and damping coefficients. This research presents a unified coordinate system model unifies performance calculation of fix-pad journal bearings and studied a non-standard four-leaf bearing with different pad preload ratios, the research conclusions provides new methods for performance calculation of fix-pad journal bearings.展开更多
基金supported by the Singapore Ministry of Education Academic Research Fund Tier 1。
文摘While sufficient review articles exist on inductive short-range wireless power transfer(WPT),long-haul microwave WPT(MWPT)for solar power satellites,and ambient microwave wireless energy harvesting(MWEH)in urban areas,few studies focus on the fundamental modeling and related design automation of receiver systems.This article reviews the development of MWPT and MWEH receivers,with a focus on rectenna design automation.A novel rectifier model capable of accurately modeling the rectification process under both high and low input power is presented.The model reveals the theoretical boundary of radio frequency-to-direct current(dc)power conversion efficiency and,most importantly,enables an automated system design.The automated rectenna design flow is sequential,with the minimal engagement of iterative optimization.It covers the design automation of every module(i.e.,rectifiers,matching circuits,antennae,and dc–dc converters).Scaling-up of the technique to large rectenna arrays is also possible,where the challenges in array partitioning and power combining are briefly discussed.In addition,several cutting-edge rectenna techniques for MWPT and MWEH are reviewed,including the dynamic range extension technique,the harmonics-based retro-directive technique,and the simultaneous wireless information and power transfer technique,which can be good complements to the presented automated design methodology.
基金the Joint Fund of the National Natural Science Foundation of China under funding number of U19B6003-02-04the fund of A Theoretical Study of Marine Petroliferous System,Sichuan Basin,and the Science Foundation of China University of Petroleum,Beijing under funding number of 2462020BJRC005.
文摘The discovery and large-scale exploration of unconventional oil/gas resources since 1980s have been considered as the most important advancement in the history of petroleum geology;that has not only changed the balance of supply and demand in the global energy market,but also improved our understanding of the formation mechanisms and distribution characteristics of oil/gas reservoirs.However,what is the difference of conventional and unconventional resources and why they always related to each other in petroliferous basins is not clear.As the differences and correlations between unconventional and conventional resources are complex challenging issues and very critical for resources assessment and hydrocarbon exploration,this paper focused on studying the relationship of formations and distributions among different oil/gas reservoirs.Drilling results of 12,237 exploratory wells in 6 representative petroliferous basins of China and distribution characteristics for 52,926 oil/gas accumulations over the world were applied to clarify the formation conditions and genetic relations of different oil/gas reservoirs in a petroliferous basin,and then to establish a unified model to address the differences and correlations of conventional and unconventional reservoirs.In this model,conventional reservoirs formed in free hydrocarbon dynamic field with high porosity and permeability located above the boundary of hydrocarbon buoyancy-driven accumulation depth limit.Unconventional tight reservoirs formed in confined hydrocarbon dynamic field with low porosity and permeability located between hydrocarbon buoyancy-driven accumulation depth limit and hydrocarbon accumulation depth limit.Shale oil/gas reservoirs formed in the bound hydrocarbon dynamic field with low porosity and ultra-low permeability within the source rock layers.More than 75%of proved reserves around the world are discovered in the free hydrocarbon dynamic field,which is estimated to contain only 10%of originally generated hydrocarbons.Most of undiscovered resources distributed in the confined hydrocarbon dynamic field and the bound hydrocarbon dynamic field,which contains 90%of original generated hydrocarbons,implying a reasonable and promising area for future hydrocarbon explorations.The buried depths of hydrocarbon dynamic fields become shallow with the increase of heat flow,and the remaining oil/gas resources mainly exist in the deep area of“cold basin”with low geothermal gradient.Lithology changing in the hydrocarbon dynamic field causes local anomalies in the oil/gas dynamic mechanism,leading to the local formation of unconventional hydrocarbon reservoirs in the free hydrocarbon dynamic field or the occurrence of oil/gas enrichment sweet points with high porosity and permeability in the confined hydrocarbon dynamic field.The tectonic movements destroy the medium conditions and oil/gas components,which leads to the transformation of conventional oil/gas reservoirs formed in free hydrocarbon dynamic field to unconventional ones or unconventional ones formed in confined and bound hydrocarbon dynamic fields to conventional ones.
基金supported by a research grant of “Development of a Polarimetric Radar Data Simulator for Local Forecasting Model (Ⅱ)” by the KMAsupport was provided by a NOAA Warn-on-Forecast grant (Grant No. NA16OAR4320115)a National Science Foundation grant (Grant No. AGS-1261776)
文摘The UK Met Office Unified Model(UM) is employed by many weather forecasting agencies around the globe. This model is designed to run across spatial and time scales and known to produce skillful predictions for large-scale weather systems. However, the model has only recently begun running operationally at horizontal grid spacings of ~1.5 km [e.g.,at the UK Met Office and the Korea Meteorological Administration(KMA)]. As its microphysics scheme was originally designed and tuned for large-scale precipitation systems, we investigate the performance of UM microphysics to determine potential inherent biases or weaknesses. Two rainfall cases from the KMA forecasting system are considered in this study: a Changma(quasi-stationary) front, and Typhoon Sanba(2012). The UM output is compared to polarimetric radar observations in terms of simulated polarimetric radar variables. Results show that the UM generally underpredicts median reflectivity in stratiform rain, producing high reflectivity cores and precipitation gaps between them. This is partially due to the diagnostic rain intercept parameter formulation used in the one-moment microphysics scheme. Model drop size is generally both underand overpredicted compared to observations. UM frozen hydrometeors favor generic ice(crystals and snow) rather than graupel, which is reasonable for Changma and typhoon cases. The model performed best with the typhoon case in terms of simulated precipitation coverage.
文摘This paper deduces a kinetic model for microbial degradation of pesticides in soils:where x is the concentration of pesticide at time t, so the initial concentration of the pesticide, me the initial number of pesticide-degrading microorganisms, M the carrying capacity for the microorganisms, μ the specific growth rate of the microorganisms, and k the rate constant for the pesticide degradation.In periodic applications of pesticides, this model can be used to continuously describe every degradation curve. Whether a lag phase occurs or not, we can obtain the minimum residue of the pesticide (xe):xe=xdexp(-kMr)/[1-exp(-ker) ]where r is the regular time internals between applications, and xd the dosage of the pesticide.
基金Project(BK2012812)supported by the Natural Science Foundation of Jiangsu Province,ChinaProject(51079053)supported by the National Natural Science Foundation of China+2 种基金Project(KYLX_0493)supported by the Scientific Research and Innovation Program for College Graduates of Jiangsu Province,ChinaProject(2014B38814)supported by the Fundamental Research Funds for Central Universities,ChinaProject(2014.1526)supported by the Open Research Fund Program of Key Laboratory of Geological Information of Ministry of Land and Resources,China
文摘For the interaction relation between geological object and engineering object in some fields related to water conservancy and hydropower, a unified modeling idea was proposed. On the basis of summarizing both advantages and disadvantages of existing modeling methods, an automatic unified modeling method of both engineering and geological objects based on tri-prism(TP) model was presented. Through the lossless correction algorithm of deviated drill holes contained in this method, the real deviated drill holes could be corrected into the equivalent virtual vertical ones. And the correction accuracy fully meets the requirements of unified modeling. With the virtual vertical drilling data, TIN construction of both cover layer and other stratums would be built in order to obtain the 3D geological model. Then, the engineering design data would be introduced into the 3D geological model for achieving unified modeling. For this process, the volume subdividing and restructuring principles were introduced to deal with the spatial relationships between engineering object and geological object. In order to improve the efficiency of unified modeling, the reconstruction of TIN based on constraint information was also applied in this method. At last, the feasibility and validation of the unified modeling method as well as its relevant key algorithms were verified by specific experiments and analysis of results.
文摘We have compiled a sample of two subsets of AGN selected from their optical and X ray data. The first subset was selected for very broad and/or peculiar optical emission line profiles, the second for a high X ray flux. Here we will discuss properties of these galaxies and show that both subsets are very similar in the multi wavelength view. Furthermore, we will discuss differences between the two subsets and their implications for a Unified Model of AGN.
文摘In this paper: 1. The assumption of the dependence of Doppler factor on the emission frequency (δ v≈δ 0 18logvv o , Fan et al. 1993, ApJ., 415, 113) is used to explain the observational differences between the radio selected BL Lac objects (RBLs) and the X Ray Selected BL lac objects (XBLs): a) Hubble relation; b) different multiwavelength correlations; c) different regions in the effective spectral index (α RO - α OX ) diagram; d) different polarization. The results suggest that RBLs and XBLs are the same. 2. From the analysis of the relation between infrared magnitude and redshift, it is proposed that the parent population of BL Lac objects should be FRI radio galaxies and FRII(G) radio galaxies showing the optical spectra of a galaxy. 3. From the superluminal motion, the assumption (δ v≈δ 0 18+logvv 0 ) is confirmed. 4. Based on the relation between polarization and Doppler factor (Fan et al. 1997a), it is proposed that the f, ratio of the beamed luminosity to the unbeamed luminosity in the source frame of OVVs/HPQs is smaller than that of BL Lac objects: f RBLs ~ 6f FSRQs .
基金supported by National Natural Science Foundation of China(Nos.U20B2055 and 61525301)Graduate Research Innovation Projects of Hunan Province,China(No.CX20210013)。
文摘To solve the problem that external systematic errors of the optical camera cannot be fully estimated due to limited computing resources,a unified dimensionality reduction representation method for the external systematic errors of the optical camera is proposed,and autonomous relative optical navigation is realized.The camera translational and misalignment errors are converted into a three-dimensional rotation error,whose differential model can be established through specific attitude control and appropriate assumption.Then,the rotation error and the relative motion state are jointly estimated in an augmented Kalman filter framework.Compared with the traditional method that estimates the camera translational and misalignment errors,the proposed method reduces the computational complexity in that the estimated state dimension is reduced.Furthermore,as demonstrated by numerical simulation,the estimation accuracy is improved significantly.
文摘This research paper defines the theoretical foundations and computational implementation of a non-conventional modeling and simulation methodology,inspired by the needs of problem solving for biological,agricultural,aquacultural and environmental systems.The challenging practical problem is to develop a framework for automatic generation of causally right and balance-based,unified models that can also be applied for the effective coupling amongst the various(sophisticated field-specific,sensor data processing-based,upper level optimization-driven,etc.)models.The scientific problem addressed in this innovation is to develop Programmable Process Structures(PPS)by combining functional basis of systems theory,structural approach of net theory and computational principles of agent based modeling.PPS offers a novel framework for the automatic generation of easily extensible and connectible,unified models for the underlying complex systems.PPS models can be generated from one state and one transition meta-prototypes and from the transition oriented description of process structure.The models consist of unified state and transition elements.The local program containing prototype elements,derived also from the meta-prototypes,are responsible for the case-specific calculations.The integrity and consistency of PPS architecture are based on the meta-prototypes,prepared to distinguish between the conservation-laws-based measures and the signals.The simulation is based on data flows amongst the state and transition elements,as well as on the unification based data transfer between these elements and their calculating prototypes.This architecture and its AI language-based(Prolog)implementation support the integration of various field-and task-specific models,conveniently.The better understanding is helped by a simple example.The capabilities of the recently consolidated general methodology are discussed on the basis of some preliminary applications,focusing on the recently studied agricultural and aquacultural cases.
基金supported in part by the Gusu Innovation and Entrepreneurship Leading Talents in Suzhou City,grant numbers ZXL2021425 and ZXL2022476Doctor of Innovation and Entrepreneurship Program in Jiangsu Province,grant number JSSCBS20211440+6 种基金Jiangsu Province Key R&D Program,grant number BE2019682Natural Science Foundation of Jiangsu Province,grant number BK20200214National Key R&D Program of China,grant number 2017YFB0403701National Natural Science Foundation of China,grant numbers 61605210,61675226,and 62075235Youth Innovation Promotion Association of Chinese Academy of Sciences,grant number 2019320Frontier Science Research Project of the Chinese Academy of Sciences,grant number QYZDB-SSW-JSC03Strategic Priority Research Program of the Chinese Academy of Sciences,grant number XDB02060000.
文摘The prediction of fundus fluorescein angiography(FFA)images from fundus structural images is a cutting-edge research topic in ophthalmological image processing.Prediction comprises estimating FFA from fundus camera imaging,single-phase FFA from scanning laser ophthalmoscopy(SLO),and three-phase FFA also from SLO.Although many deep learning models are available,a single model can only perform one or two of these prediction tasks.To accomplish three prediction tasks using a unified method,we propose a unified deep learning model for predicting FFA images from fundus structure images using a supervised generative adversarial network.The three prediction tasks are processed as follows:data preparation,network training under FFA supervision,and FFA image prediction from fundus structure images on a test set.By comparing the FFA images predicted by our model,pix2pix,and CycleGAN,we demonstrate the remarkable progress achieved by our proposal.The high performance of our model is validated in terms of the peak signal-to-noise ratio,structural similarity index,and mean squared error.
基金supported by the National Natural Science Foundation of China(Grant Nos.41271346,41571329&41230747)the Major State Basic Research Development Program of China(Grant No.2013CB733402)
文摘An accurate and operational bidirectional reflectance distribution function (BDRF) canopy model is the basis of quantitative vegetation remote sensing. The canopy reflectance should be approximated as the sum of the single scattering reflectance arising from the sun, pl, and the multiple scattering reflectance arising from the canopy, fin, as their directional characteristics are dramatically different. Based on the existing BRDF model, we obtain a new analytical expression of ρ1 and ρm in this paper, which is suitable for different illumination conditions and different vegetation canopies. According to the geometrical optic model at the leaf scale, the anisotropy of ρ1 can be ascribed to the geometry of the object, sun and the sensor, multiple scale clumping, and the fraction of direct solar radiation and diffuse sky radiation. Then, we parameterize the area ratios of four components: the sunlit foliage, sunlit ground, shadow foliage and shadow ground based on a Poisson distribution, and develop a new approximate analytical single scattering reflectance model. Assuming G=0.5, a recollision probability theory based scattering model is developed which considers the effects of diffuse sky radiation, scattering inside the canopy and rebounds between the canopy and soil. Validation using ground measurements of maize and black spruce forest proves the reliability of the model.
基金supported by the King Fahd University of Petroleum and Minerals,Saudi Arabia(No.IN100046)
文摘The unified modeling language(UML) is one of the most commonly used modeling languages in the software industry.It simplifies the complex process of design by providing a set of graphical notations,which helps express the objectoriented analysis and design of software projects.Although UML is applicable to different types of systems,domains,methods,and processes,it cannot express certain problem domain needs.Therefore,many extensions to UML have been proposed.In this paper,we propose a framework for integrating the UML extensions and then use the framework to propose an integrated unified modeling language-graphical(iUML-g) form.iUML-g integrates the existing UML extensions into one integrated form.This includes an integrated diagram for UML class,sequence,and use case diagrams.The proposed approach is evaluated using a case study.The proposed iUML-g is capable of modeling systems that use different domains.
文摘Human faces have two important characteristics: (1) They are similar objectsand the specific variations of each face are similar to each other; (2) They are nearly bilateralsymmetric. Exploiting the two important properties, we build a unified model in identity subspace(UMIS) as a novel technique for face recognition from only one example image per person. An identitysubspace spanned by bilateral symmetric bases, which compactly encodes identity information, ispresented. The unified model, trained on an obtained training set with multiple samples per classfrom a known people group A, can be generalized well to facial images of unknown individuals, andcan be used to recognize facial images from an unknown people group B with only one sample persubject, Extensive experimental results on two public databases (the Yale database and the Berndatabase) and our own database (the ICT-JDL database) demonstrate that the UMIS approach issignificantly effective and robust for face recognition.
基金Project partially supported by the Strategic Grants POSDRU/88/1.5/S/50783 Project (No.50783,2009),POSDRU/107/1.5/S/77265 Project (No.77265,2010),Romaniathe European Social Fund for Investing in People, within the Sectoral Operational Programme Human Resources Development 2007-2013
文摘Cyber physical systems (CPSs) can be found nowadays in various fields of activity. The increased interest for these systems as evidenced by the large number of applications led to complex research regarding the most suitable methods for design and development. A promising solution for specification, visualization, and documentation of CPSs uses the Object Management Group (OMG) unified modeling language (UML). UML models allow an intuitive approach for embedded systems design, helping end-users to specify the requirements. However, the UML models are represented in an informal language. Therefore, it is difficult to verify the correctness and completeness of a system design. The object constraint language (OCL) was defined to add constraints to UML, but it is deficient in strict notations of mathematics and logic that permits rigorous analysis and reasoning about the specifications. In this paper, we investigated how CPS applications modeled using UML deployment diagrams could be formally expressed and verified. We used Z language constructs and prototype verification system (PVS) as formal verification tools. Considering some relevant case studies presented in the literature, we investigated the opportunity of using this approach for validation of static properties in CPS UML models.
文摘A unified model is based on a generalized gauge symmetry with groups [Sg3c]color×(SU2×U1)X[U1b×U11]. It implies that all interactions should preserve conservation laws of baryon number, lepton number, and electric charge, etc. The baryonie U1b, leptonie U11 and color SU3o gauge transformations are generalized to involve nonintegrable phase factors. One has gauge invariant fourth-order equations for massless gauge fields, which leads to linear potentials in the [U1b × U11] and color [SUao] sectors. We discuss possible cosmological implications of the new baryonie gauge field. It can produce a very small constant repulsive force between two baryon galaxies (or between two anti-baryon galaxies), where the baryon force can overcome the gravitational force at very large distances and leads to an accelerated cosmic expansion. Based on conservation laws in the unified model, we discuss a simple rotating dumbbell universe with equal amounts of matter and anti-matter, which may be pictured as two gigantic rotating clusters of galaxies. Within the gigantic baryonie cluster, a galaxy will have an approximately linearly accelerated expansion due to the effective force of constant density of all baryonie matter. The same expansion happens in the gigantic anti-baryonic cluster. Physical implications of the generalized gauge symmetry on charmonium confining potentials due to new SUac field equations, frequency shift of distant supernovae Ia and their experimental tests are discussed.
基金Project(2017M622540)supported by the China Postdoctoral Science FoundationProject(51808419)supported by the National Natural Science Foundation of China+1 种基金Project(2019CFB217)supported by the National Natural Science Foundation of Hubei Province,ChinaProject(201623)supported by the Science and Technology Project of Wuhan Urban and Rural Construction Committee,China。
文摘Fibre-reinforced polymer(FRP)has the advantages of high strength,light weight,corrosion resistance and convenient construction and is widely used in repairing and strengthening damaged concrete columns.Most of the existing strength models were built by regression analysis of experimental data;however,in this article,a new unified strength model is proposed using the Hoek-Brown failure criterion.To study the strength of FRP-confined damaged and undamaged concrete columns,900 test data were collected from the published literature and a large database that contains the cross-sectional shape of each specimen,the damage type,the damage level and the FRP-confined stiffness was established.A new strength model using the Hoek-Brown failure criterion was established and is suitable for both circular and square columns that are undamaged,load-damaged and fire-damaged.Based on the database,most of the existing strength models from the published literature and the model proposed in this paper were evaluated.The evaluation shows that the proposed model can predict the compressive strength for FRP-confined pre-damaged and undamaged concrete columns with good accuracy.
基金This work was supported by the Excellent Young Faculty Foundation of the State Education Committee of China
文摘Based on six thermodynamic equilibria,a unified retention model of solute in liquid chromatography(LC)is first proposed.The unified model was tested and proved to be valid for a LC sys- tem with mobile phase consisting of a complete range of multiple,ternary or binary components and each kind of LC except size exclusion chromatography.In addition,so long as making some assumptions and mathematical conversions,the expressions of various popular models in LC can be derived by using the unified model.
基金Major funding for this research was provided by the Ministry of Higher Education Malaysia and partially funded by the Land Surveyors Board of Malaysia.
文摘Understanding the behavior of urban air pollution is important en route for sustainable urban development (SUD). Malaysia is on its mission to be a developed country by year 2020 comprehends dealing with air pollution is one of the indicators headed towards it. At present monitoring and managing air pollution in urban areas encompasses sophisticated air quality modeling and data acquisition. However, rapid developments in major cities cause difficulties in acquiring the city geometries. The existing method in acquiring city geometries data via ground or space measurement inspection such as field survey, photogrammetry, laser scanning, remote sensing or using architectural plans appears not to be practical because of its cost and efforts. Moreover, air monitoring stations deployed are intended for regional to global scale model whereby it is not accurate for urban areas with typical resolution of less than 2 km. Furthermore in urban areas, the pollutant dispersion movements are trapped between buildings initiating it to move vertically causing visualization complications which imply the limitations of existing visualization scheme that is based on two-dimensional (2D) framework. Therefore this paper aims is to perform groundwork assessment and discuss on the current scenario in Malaysia in the aspect of current policies towards SUD, air quality monitoring stations, scale model and detail discussion on air pollution dispersion model used called the Operational Street Pollution Model (OSPM). This research proposed the implementation of three-dimensional (3D) spatial city model as a new physical data input for OSPM. The five Level of Details (LOD) of 3D spatial city model shows the scale applicability for the dispersion model implementtation. Subsequently 3D spatial city model data commonly available on the web, by having a unified data model shows the advantages in easy data acquisition, 3D visualization of air pollution dispersion and improves visual analysis of air quality monitoring in urban areas.
基金Sponsored by Postdoctoral Fund of Heilongjiang Province (Grant NoLRB05 -002)
文摘Polarized magnetic system has a series of features, such as small volume, light weight, low power consumption, high sensitivity, quick movement and so on, widely used in the products of the military aerospace electromagnetic relay. The typical polarized magnetic system has mainly four structures and its simplified equivalent magnetic circuits model is the base of the design of the electromagnetic relay with permanent magnet. In the past, the analysis method that people used was difficult to build the unified mathematical models, which divided the work gap magnetic flux into "permanent magnet flux" and "electromagnetic flux". Based on the analysis method of the work gap magnetic voltage, this paper founds the unified mathematical model of the polarized magnetic system and divides the attractive torque into permanent magnet torque, polarized torque and electromagnetic torque through the energy balance formula. It analyses the influence of permanent magnet sizes on permanent magnet torque, polarized torque and electromagnetic torque through the energy balance formula and the conclusions can direct the design of aerospace electromagnetic relay with permanent magnet.
基金Supported by National Natural Science Foundation of China(Grant No.51275395)Major National Basic Research Development Program of China(973 Program,Grant Nos.2009CB724304-2,2009CB724404)
文摘Traditional model for calculating performance parameters of a fix-pad journal bearing leads to heavy workload, complicated and changeable formulae as it requires deriving various geometric formulae with different bearing types such as circular journal bearing, dislocated bearing and elliptic bearing. Considering different pad preload ratios for non-standard bearing, traditional model not only becomes more complicated but also reduces scalability and promotion of the calculation programs. For the complexly case of traditional model while dealing with various fix-pad journal bearings, unified coordinate system model for performance calculation of fix-pad journal bearing is presented in the paper. A unified coordinate system with the bearing center at the origin is established, and the eccentricity ratio and attitude angle of axis relative to each pad are calculated through the coordinates of journal center and each pad center. Geometric description of fix-pad journal bearing is unified in this model, which can be used for both various standard bearing and non-standard bearing with different pad preload ratios. Validity of this model is verified with an elliptical bearing. Performance of a non-standard four-leaf bearing with different pad preload ratios is calculated based on this model. The calculation result shows that increasing preload ratio of the pad 1 and keeping that of the left three pads constant improves bearing capacity, stiffness and damping coefficients. This research presents a unified coordinate system model unifies performance calculation of fix-pad journal bearings and studied a non-standard four-leaf bearing with different pad preload ratios, the research conclusions provides new methods for performance calculation of fix-pad journal bearings.