期刊文献+
共找到6篇文章
< 1 >
每页显示 20 50 100
New Asphalt Pavement Failure Criterion Based on Unified Strength Theory
1
作者 杨群 CHEN Lu +1 位作者 王屏 DAI Jingwang 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2015年第3期528-532,共5页
This study aims to introduce an appropriate analytical method for asphalt pavement based upon unified strength theory (UST). The traditional maximum shear stress strength theory (MSST) cannot describe the marked d... This study aims to introduce an appropriate analytical method for asphalt pavement based upon unified strength theory (UST). The traditional maximum shear stress strength theory (MSST) cannot describe the marked difference between tension strength and compressive strength or variable intermediate principal stress, which significantly affects the geotechnical materials. Our studies try to find a new asphalt pavement failure criterion that considers the influence of both tension-compression strength ratio and intermediate principal stress of asphalt mixture. In order to select a suitable theory on pavement material, the UST is introduced and compared with the traditional theory. Results show that the tension-compression strength ratio of asphalt mixture, which is used as a material parameter, dramatically affects the stress and stress distribution law in pavement; the pavement stress level increases dramatically after considering the intermediate principal stresses. Therefore, the UST which considers both tension-compression strength ratio and intermediate principal stress is more in line with the material characteristics of asvhalt pavement. 展开更多
关键词 asphalt pavement strength theory unified strength theory
下载PDF
Assessing the range of blasting-induced cracks in the surrounding rock of deeply buried tunnels based on the unified strength theory
2
作者 LI Liang CHEN Jia-jun +3 位作者 ZHAO Lian-heng HE Ke-pei HU Shi-hong LI Hua-long 《Journal of Central South University》 SCIE EI CAS 2024年第7期2341-2364,共24页
Blasting-induced cracks in the rock surrounding deeply buried tunnels can result in water gushing and rock mass collapse,posing significant safety risks.However,previous theoretical studies on the range of blasting-in... Blasting-induced cracks in the rock surrounding deeply buried tunnels can result in water gushing and rock mass collapse,posing significant safety risks.However,previous theoretical studies on the range of blasting-induced cracks often ignore the impact of the in-situ stress,especially that of the intermediate principal stress.The particle displacement−crack radius relationship was established in this paper by utilizing the blasthole cavity expansion equation,and theoretical analytical formulas of the stress−displacement relationship and the crack radius were derived with unified strength theory to accurately assess the range of cracks in deep surrounding rock under a blasting load.Parameter analysis showed that the crushing zone size was positively correlated with in-situ stress,intermediate principal stress,and detonation pressure,whereas negatively correlated with Poisson ratio and decoupling coefficient.The dilatancy angle-crushing zone size relationship exhibited nonmonotonic behavior.The relationships in the crushing zone and the fracture zone exhibited opposite trends under the influence of only in-situ stress or intermediate principal stress.As the in-situ stress increased from 0 to 70 MPa,the rate of change in the crack range and the attenuation rate of the peak vibration velocity gradually slowed. 展开更多
关键词 deep drilling and blasting cracks in surrounding rock unified strength theory intermediate principle stress in-situ stress cavity expansion dilatancy characteristics
下载PDF
Analytical solutions for deep tunnels in strain-softening rocks modeled by different elastic strain definitions with the unified strength theory 被引量:1
3
作者 SUN ZhenYu ZHANG DingLi +2 位作者 FANG Qian DUI GuanSuo CHU ZhaoFei 《Science China(Technological Sciences)》 SCIE EI CAS CSCD 2022年第10期2503-2519,共17页
This paper presents the analytical solutions for the responses of tunnels excavated in rock masses exhibiting strain-softening behavior. Since previous analyses give little consideration to the effect of the intermedi... This paper presents the analytical solutions for the responses of tunnels excavated in rock masses exhibiting strain-softening behavior. Since previous analyses give little consideration to the effect of the intermediate principal stress on the strain-softening rock behavior, the unified strength theory was introduced to analyze the tunnel response. Four cases of different definitions of the elastic strain in the softening and residual regions, used in the existing solutions, were considered. The tunnel displacements,stresses, radii of the softening and residual zones and critical stresses were deduced. The proposed solutions were verified by comparing with numerical simulations, model tests and existing solutions. Furthermore, the solutions of the four cases were compared with each other to investigate the influence of the elastic strain expressions on the tunnel responses. The results showed that the intermediate principal stress coefficient b has a significant effect on the tunnel displacements, stress fields, and plastic radii. Parametric studies were performed to analyze the influences of the softening and residual dilatancy coefficients,softening modulus and residual strength on the tunnel responses. The parametric analysis indicated that the existing models should be carefully evaluated in the analysis of tunnels constructed through average-quality rocks;the proposed solutions outperformed the existing models in solving the mentioned problem. 展开更多
关键词 analytical solution elastic strain definition unified strength theory STRAIN-SOFTENING intermediate principal stress model test
原文传递
Unified elastoplastic finite difference and its application 被引量:1
4
作者 马宗源 廖红建 党发宁 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI 2013年第4期457-474,共18页
Two elastoplastic constitutive models based on the unified strength the- ory (UST) are established and implemented in an explicit finite difference code, fast Lagrangian analysis of continua (FLAC/FLAC3D), which i... Two elastoplastic constitutive models based on the unified strength the- ory (UST) are established and implemented in an explicit finite difference code, fast Lagrangian analysis of continua (FLAC/FLAC3D), which includes an associated/non- associated flow rule, strain-hardening/softening, and solutions of singularities. Those two constitutive models are appropriate for metallic and strength-different (SD) materials, respectively. Two verification examples are used to compare the computation results and test data using the two-dimensional finite difference code FLAC and the finite element code ANSYS, and the two constitutive models proposed in this paper are verified. Two application examples, the large deformation of a prismatic bar and the strain-softening be- havior of soft rock under a complex stress state, are analyzed using the three-dimensional code FLAC3D. The two new elastoplastic constitutive models proposed in this paper can be used in bearing capacity evaluation or stability analysis of structures built of metallic or SD materials. The effect of the intermediate principal stress on metallic or SD mate- rial structures under complex stress states, including large deformation, three-dimensional and non-association problems, can be analyzed easily using the two constitutive models proposed in this paper. 展开更多
关键词 elastoplastic constitutive model unified strength theory explicit finite difference effect of intermediate principal stress
下载PDF
Basic characteristics and development of yield criteria for geomaterials 被引量:7
5
作者 Maohong Yu Gulyun Xia Vladimir A Kolupaev 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE 2009年第1期71-88,共18页
The yield criteria of geomaterials play a crucial role in studying and designing the strength of materials and structures.The basic characteristics of yield criteria for geomaterials need to be studied under the frame... The yield criteria of geomaterials play a crucial role in studying and designing the strength of materials and structures.The basic characteristics of yield criteria for geomaterials need to be studied under the framework of continuum mechanics.These characteristics include the effects of strength difference(SD) of materials in tension and compression,normal stress,intermediate principal stress,intermediate principal shear stress,hydrostatic stress,twin-shear stresses,and the convexity of yield surface.Most of the proposed yield criteria possess only one or some of these basic characteristics.For example,the Tresca yield criterion considers only single-shear stress effect,and ignores the effect of SD,normal stress,intermediate principal stress,intermediate principal shear stress,hydrostatic stress,and twin-shear stresses.The Mohr-Coulomb yield criterion accounts for the effect of SD,normal stress,single-shear stress and hydrostatic stress,but disregards the effect of intermediate principal stress,intermediate principal shear stress,and twin-shear stresses.The basic characteristics remain to be fully addressed in the development of yield criterion.In this paper,we propose a new yield criterion with three features,that is,newly developed,better than existing criteria and ready for application.It is shown that the proposed criterion performs better than the existing ones and is ready for application.The development of mechanical models for various yield criteria and the applications of the unified strength theory to engineering are also summarized.According to a new tetragonal mechanical model,a tension-cut condition is added to the unified strength theory.The unified strength theory is extended to the tension-tension region. 展开更多
关键词 yield criteria failure criteria unified strength theory tension cut-off orthogonal octahedral element geomaterial beauty of a strength theory
下载PDF
A Modified Symmetric and Antisymmetric Decomposition-Based Three-Dimensional Numerical Manifold Method for Finite Elastic-Plastic Deformations 被引量:1
6
作者 Jinfu Ke Shuilin Wang 《Acta Mechanica Solida Sinica》 SCIE EI CSCD 2020年第1期71-97,共27页
There are relatively few studies on large rotation or deformation by means of the three-dimensional(3D)numerical manifold method(NMM).A new modified symmetric and antisymmetric decomposition(MSAD)theory is developed a... There are relatively few studies on large rotation or deformation by means of the three-dimensional(3D)numerical manifold method(NMM).A new modified symmetric and antisymmetric decomposition(MSAD)theory is developed and implemented into the 3D NMM,eliminating the false-volume expansion and false-rotation strain/stress problems.The Jaumann rate is used to measure the material rotation,and the geometric stiffness built on the Jaumann rate is deduced.The incremental formulas of the MSAD-based 3D NMM and a practical guide on the implementation of the MSAD theory are given in detail and exemplified.The new theory and formulas can be applied to analyze both large rotation and large deformation problems.Based on the hypoelasto-plasticity theory and the unified strength theory,the unified yield criterion with associated flow rule is implemented into the MSAD-based 3D NMM.Several typical examples are studied,showing the advantage and potential of the new MSAD theory and the MSAD-based 3D NMM. 展开更多
关键词 Modified symmetric and antisymmetric decomposition theory Three-dimensional numerical manifold method Finite elastic plastic deformations Hypoelasto-plasticity unified strength theory
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部