In the present paper,we mostly focus on P_(p)^(2)-statistical convergence.We will look into the uniform integrability via the power series method and its characterizations for double sequences.Also,the notions of P_(p...In the present paper,we mostly focus on P_(p)^(2)-statistical convergence.We will look into the uniform integrability via the power series method and its characterizations for double sequences.Also,the notions of P_(p)^(2)-statistically Cauchy sequence,P_(p)^(2)-statistical boundedness and core for double sequences will be described in addition to these findings.展开更多
This paper studies the problem of the spectral radius of the uniform hypergraph determined by the signless Laplacian matrix.The upper bound of the spectral radius of a uniform hypergraph is obtained by using Rayleigh ...This paper studies the problem of the spectral radius of the uniform hypergraph determined by the signless Laplacian matrix.The upper bound of the spectral radius of a uniform hypergraph is obtained by using Rayleigh principle and the perturbation of the spectral radius under moving the edge operation,and the extremal hypergraphs are characterized for both supertree and unicyclic hypergraphs.The spectral radius of the graph is generalized.展开更多
Adaptive grid methods are established as valuable computational technique in approximating effectively the solutions of problems with boundary or interior layers. In this paper,we present the analysis of an upwind sch...Adaptive grid methods are established as valuable computational technique in approximating effectively the solutions of problems with boundary or interior layers. In this paper,we present the analysis of an upwind scheme for singularly perturbed differential-difference equation on a grid which is formed by equidistributing arc-length monitor function.It is shown that the discrete solution obtained converges uniformly with respect to the perturbation parameter.Numerical experiments illustrate in practice the result of convergence proved theoretically.展开更多
In this paper, using Lin's integral identity technique, we prove the optimal uniform convergence θ(Nx^-2ln^2Nx+Ny^-2ln^2Ny) in the L^2-norm for singularly perturbed problems with parabolic layers. The error esti...In this paper, using Lin's integral identity technique, we prove the optimal uniform convergence θ(Nx^-2ln^2Nx+Ny^-2ln^2Ny) in the L^2-norm for singularly perturbed problems with parabolic layers. The error estimate is achieved by bilinear finite elements on a Shishkin type mesh. Here Nx and Ny are the number of elements in the x- and y-directions, respectively. Numerical results are provided supporting our theoretical analysis.展开更多
Let G be a finite domain in the complex plane with K-quasicon formal boundary, z 0 be an arbitrary fixed point in G and p>0. Let π(z) be the conformal mapping from G onto the disk with radius r 0>0 and centered...Let G be a finite domain in the complex plane with K-quasicon formal boundary, z 0 be an arbitrary fixed point in G and p>0. Let π(z) be the conformal mapping from G onto the disk with radius r 0>0 and centered at the origin 0, normalized by ?(z 0) = 0 and ?(z 0) = 1. Let us set $\varphi _p \left( z \right): = \int_{x_0 }^x {\left[ {\phi \left( \zeta \right)} \right]^{2/8} } d\zeta $ , and let π n,p (z) be the generalized Bieberbach polynomial of degree n for the pair (G,z 0) that minimizes the integral $\iint\limits_c {\left| {\varphi _p \left( z \right) - P_x^1 (z)} \right|^p d0_x }$ in the class $\mathop \prod \limits_n $ of all polynomials of degree ≤ n and satisfying the conditions P n (z 0) = 0 and P′ n (z 0) = 1. In this work we prove the uniform convergence of the generalized Bieberbach polynomials π n,p (z) to ? p (z) on $\bar G$ in case of $p > 2 - \frac{{K^2 + 1}}{{2K^4 }}$ .展开更多
In this paper, we study elliptic partial differential equations with nonuniform growth, and obtain the strong convergence of the gradient of truncations of solutions and the strong convergence of the gradient of solut...In this paper, we study elliptic partial differential equations with nonuniform growth, and obtain the strong convergence of the gradient of truncations of solutions and the strong convergence of the gradient of solutions in the setting of some Musielak-Orlicz spaces. Our results are generalization of the corresponding results for elliptic partial differential equations with power growth.展开更多
The purpose of this paper is to study necessary and su?cient condition for the strong convergence of a new parallel iterative algorithm with errors for two finite families of uniformly L-Lipschitzian mappings in Bana...The purpose of this paper is to study necessary and su?cient condition for the strong convergence of a new parallel iterative algorithm with errors for two finite families of uniformly L-Lipschitzian mappings in Banach spaces. The results presented in this paper improve and extend the recent ones announced by [2–7].展开更多
The purpose of this work is to implement a discontinuous Galerkin(DG)method with a one-sided flux for a singularly perturbed Volterra integro-differential equation(VIDE)with a smooth kernel.First,the regularity proper...The purpose of this work is to implement a discontinuous Galerkin(DG)method with a one-sided flux for a singularly perturbed Volterra integro-differential equation(VIDE)with a smooth kernel.First,the regularity property and a decomposition of the exact solution of the singularly perturbed VIDE with the initial condition are provided.Then the existence and uniqueness of the DG solution are proven.Then some appropriate projection-type interpolation operators and their corresponding approximation properties are established.Based on the decomposition of the exact solution and the approximation properties of the projection type interpolants,the DG method achieves the uniform convergence in the L2 norm with respect to the singular perturbation parameter e when the space of polynomials with degree p is used.A numerical experiment validates the theoretical results.Furthermore,an ultra-convergence order 2p+1 at the nodes for the one-sided flux,uniform with respect to the singular perturbation parameter e,is observed numerically.展开更多
Recently, C. Tain and G. Chen introduced a new concept of sequence of time invariant function. In this paper we try to investigate the chaotic behavior of the uniform limit function f : X →X of a sequence of continu...Recently, C. Tain and G. Chen introduced a new concept of sequence of time invariant function. In this paper we try to investigate the chaotic behavior of the uniform limit function f : X →X of a sequence of continuous topologically transitive (in strongly successive way) functions fn : X →X, where X is a compact interval. Surprisingly, we find that the uniform limit function is chaotic in the sense of Devaney. Lastly, we give an example to show that the denseness property of Devaney's definition is lost on the limit function.展开更多
In this paper, we prove the existence, uniqueness and uniform convergence of the solution of finite volume element method based on the P1 conforming element for non-selfadjoint and indefinite elliptic problems under m...In this paper, we prove the existence, uniqueness and uniform convergence of the solution of finite volume element method based on the P1 conforming element for non-selfadjoint and indefinite elliptic problems under minimal elliptic regularity assumption.展开更多
We stress a basic criterion that shows in a simple way how a sequence of real-valued functions can converge uniformly when it is more or less evident that the sequence converges uniformly away from a finite number of ...We stress a basic criterion that shows in a simple way how a sequence of real-valued functions can converge uniformly when it is more or less evident that the sequence converges uniformly away from a finite number of points of the closure of its domain. For functions of a real variable, unlike in most classical textbooks our criterion avoids the search of extrema (by differential calculus) of their general term.展开更多
In this paper, we introduced the notion of uniform convergence of the linear operators on the probabilistic nornied space, and the notion of probabilistic distance between the operators, which describes the above conv...In this paper, we introduced the notion of uniform convergence of the linear operators on the probabilistic nornied space, and the notion of probabilistic distance between the operators, which describes the above convergence completely. In terms of these notions, we obtained the essential features of the continuity of operators, and of the uniform convergence of operator sequences, and we also obtained the closure of continuity and complete continuity under the operation of the limit of uniform convergence.展开更多
In this paper we study the dynamical behavior of a system ?approximated uniformly by a sequence ?of chaotic maps. We give examples to show that properties like sensitivity and denseness of periodic points need not be ...In this paper we study the dynamical behavior of a system ?approximated uniformly by a sequence ?of chaotic maps. We give examples to show that properties like sensitivity and denseness of periodic points need not be preserved under uniform convergence. We derive conditions under which some of the dynamical properties of the maps ?are preserved in .展开更多
In this paper, we discuss the uniform convergence of the simple upwind scheme on the Shishkin mesh and the Bakhvalov-Shishkin mesh for solving a singularly perturbed Robin boundary value problem, and investigate the m...In this paper, we discuss the uniform convergence of the simple upwind scheme on the Shishkin mesh and the Bakhvalov-Shishkin mesh for solving a singularly perturbed Robin boundary value problem, and investigate the midpoint upwind scheme on the Shishkin mesh and the Bakhvalov-Shishkin mesh to achieve better uniform convergence. The elaborate ε-uniform pointwise estimates are proved by using the comparison principle and barrier functions. The numerical experiments support the theoretical results for the schemes on the meshes.展开更多
We study the approximation properties of the extremal polynomials in Ap?norm and C?norm. We prove estimates for the rate of such convergence of the sequence of the extremal polynomials on domains with corners and spec...We study the approximation properties of the extremal polynomials in Ap?norm and C?norm. We prove estimates for the rate of such convergence of the sequence of the extremal polynomials on domains with corners and special cusps.展开更多
It is well accepted that a lithiophilic interface can effectively regulate Li deposition behaviors,but the influence of the lithiophilic interface is gradually diminished upon continuous Li deposition that completely ...It is well accepted that a lithiophilic interface can effectively regulate Li deposition behaviors,but the influence of the lithiophilic interface is gradually diminished upon continuous Li deposition that completely isolates Li from the lithiophilic metals.Herein,we perform in-depth studies on the creation of dynamic alloy interfaces upon Li deposition,arising from the exceptionally high diffusion coefficient of Hg in the amalgam solid solution.As a comparison,other metals such as Au,Ag,and Zn have typical diffusion coefficients of 10-20 orders of magnitude lower than that of Hg in the similar solid solution phases.This difference induces compact Li deposition pattern with an amalgam substrate even with a high areal capacity of 55 mAh cm^(-2).This finding provides new insight into the rational design of Li anode substrate for the stable cycling of Li metal batteries.展开更多
Throughout this paper, we introduce a new hybrid iterative algorithm for finding a common element of the set of common fixed points of a finite family of uniformly asymptotically nonexpansive semigroups and the set of...Throughout this paper, we introduce a new hybrid iterative algorithm for finding a common element of the set of common fixed points of a finite family of uniformly asymptotically nonexpansive semigroups and the set of solutions of an equilibrium problem in the framework of Hilbert spaces. We then prove the strong convergence theorem with respect to the proposed iterative algorithm. Our results in this paper extend and improve some recent known results.展开更多
In convex metric spaces, the sufficient and necessary conditions for Ishikawa iterative sequences of uniformly quasi-Lipschitzian mapping T with mixed errors to converge to a fixed point ate proved, and as a special c...In convex metric spaces, the sufficient and necessary conditions for Ishikawa iterative sequences of uniformly quasi-Lipschitzian mapping T with mixed errors to converge to a fixed point ate proved, and as a special case, in which T need not be continuous. The results of this paper improve and extend some recent results.展开更多
The spatial pattern of trees is an important feature of forests,and different spatial patterns of trees exhibit different ecological stability.Research has confirmed that natural forests with random patterns have high...The spatial pattern of trees is an important feature of forests,and different spatial patterns of trees exhibit different ecological stability.Research has confirmed that natural forests with random patterns have higher biodiversity and stronger resistance to unstable factors such as pests and diseases.Even if they are disturbed or destroyed by unstable factors such as pests and diseases,they can still recover and rescue themselves;while artificial forests with uniform and clustered patterns have lower biodiversity and are susceptible to unstable factors such as pests and diseases.And once pests and diseases occur,it’s more difficult for them to recover.In order to promote the healthy and stable develop-ment of the forestry industry and protect the diversity of the biological environment,it is necessary to protect the random pattern of natural forests from being destroyed in the process of forest management,while effectively transforming the spatial pattern of artificial forests into a random pattern.Therefore,in order to ensure the convenient and accurate determination of the type of forest spatial pattern,research on methods for determining forest spatial pattern has become particularly important.Based on the theory of uniformity,this study proposes definitions and related theories of included exclusive sphere,included exclusive body,included random pattern,and included uniformity.Under the guidance of the definition of inclusion uniformity and related theories,and by using mathematical method,it is proved that the uniformity of inclusion(CL)is asymptotically subject to the Eq.18,Therefore,the relationship between the included uniformity(CL)and the number of trees in the sample plot was established,and the corresponding relationship formula was obtained,and then the determination of the spatial pattern type of trees was completed by using the corresponding relationship formula.Through rigorous reasoning and case verification,the determination method of forest spatial pattern is effective.展开更多
文摘In the present paper,we mostly focus on P_(p)^(2)-statistical convergence.We will look into the uniform integrability via the power series method and its characterizations for double sequences.Also,the notions of P_(p)^(2)-statistically Cauchy sequence,P_(p)^(2)-statistical boundedness and core for double sequences will be described in addition to these findings.
基金Supported by Natural Science Foundation of HuBei Province(2022CFB299).
文摘This paper studies the problem of the spectral radius of the uniform hypergraph determined by the signless Laplacian matrix.The upper bound of the spectral radius of a uniform hypergraph is obtained by using Rayleigh principle and the perturbation of the spectral radius under moving the edge operation,and the extremal hypergraphs are characterized for both supertree and unicyclic hypergraphs.The spectral radius of the graph is generalized.
基金supported by the Department of Science & Technology, Government of India under research grant SR/S4/MS:318/06.
文摘Adaptive grid methods are established as valuable computational technique in approximating effectively the solutions of problems with boundary or interior layers. In this paper,we present the analysis of an upwind scheme for singularly perturbed differential-difference equation on a grid which is formed by equidistributing arc-length monitor function.It is shown that the discrete solution obtained converges uniformly with respect to the perturbation parameter.Numerical experiments illustrate in practice the result of convergence proved theoretically.
文摘In this paper, using Lin's integral identity technique, we prove the optimal uniform convergence θ(Nx^-2ln^2Nx+Ny^-2ln^2Ny) in the L^2-norm for singularly perturbed problems with parabolic layers. The error estimate is achieved by bilinear finite elements on a Shishkin type mesh. Here Nx and Ny are the number of elements in the x- and y-directions, respectively. Numerical results are provided supporting our theoretical analysis.
文摘Let G be a finite domain in the complex plane with K-quasicon formal boundary, z 0 be an arbitrary fixed point in G and p>0. Let π(z) be the conformal mapping from G onto the disk with radius r 0>0 and centered at the origin 0, normalized by ?(z 0) = 0 and ?(z 0) = 1. Let us set $\varphi _p \left( z \right): = \int_{x_0 }^x {\left[ {\phi \left( \zeta \right)} \right]^{2/8} } d\zeta $ , and let π n,p (z) be the generalized Bieberbach polynomial of degree n for the pair (G,z 0) that minimizes the integral $\iint\limits_c {\left| {\varphi _p \left( z \right) - P_x^1 (z)} \right|^p d0_x }$ in the class $\mathop \prod \limits_n $ of all polynomials of degree ≤ n and satisfying the conditions P n (z 0) = 0 and P′ n (z 0) = 1. In this work we prove the uniform convergence of the generalized Bieberbach polynomials π n,p (z) to ? p (z) on $\bar G$ in case of $p > 2 - \frac{{K^2 + 1}}{{2K^4 }}$ .
文摘In this paper, we study elliptic partial differential equations with nonuniform growth, and obtain the strong convergence of the gradient of truncations of solutions and the strong convergence of the gradient of solutions in the setting of some Musielak-Orlicz spaces. Our results are generalization of the corresponding results for elliptic partial differential equations with power growth.
基金supported by the National Natural Science Foun-dation of China (11071169)the Natural Science Foundation of Zhejiang Province (Y6110287)
文摘The purpose of this paper is to study necessary and su?cient condition for the strong convergence of a new parallel iterative algorithm with errors for two finite families of uniformly L-Lipschitzian mappings in Banach spaces. The results presented in this paper improve and extend the recent ones announced by [2–7].
基金supported by the National Natural Science Foundation of China(12001189)supported by the National Natural Science Foundation of China(11171104,12171148)。
文摘The purpose of this work is to implement a discontinuous Galerkin(DG)method with a one-sided flux for a singularly perturbed Volterra integro-differential equation(VIDE)with a smooth kernel.First,the regularity property and a decomposition of the exact solution of the singularly perturbed VIDE with the initial condition are provided.Then the existence and uniqueness of the DG solution are proven.Then some appropriate projection-type interpolation operators and their corresponding approximation properties are established.Based on the decomposition of the exact solution and the approximation properties of the projection type interpolants,the DG method achieves the uniform convergence in the L2 norm with respect to the singular perturbation parameter e when the space of polynomials with degree p is used.A numerical experiment validates the theoretical results.Furthermore,an ultra-convergence order 2p+1 at the nodes for the one-sided flux,uniform with respect to the singular perturbation parameter e,is observed numerically.
基金CSIR ( project no. F.NO. 8/3(45)/2005-EMR-I)for providing financial support to carry out the research work
文摘Recently, C. Tain and G. Chen introduced a new concept of sequence of time invariant function. In this paper we try to investigate the chaotic behavior of the uniform limit function f : X →X of a sequence of continuous topologically transitive (in strongly successive way) functions fn : X →X, where X is a compact interval. Surprisingly, we find that the uniform limit function is chaotic in the sense of Devaney. Lastly, we give an example to show that the denseness property of Devaney's definition is lost on the limit function.
基金The Major State Basic Research Program (19871051) of China the NNSF (19972039) of China and Yantai University Doctor Foundation (SX03B20).
文摘In this paper, we prove the existence, uniqueness and uniform convergence of the solution of finite volume element method based on the P1 conforming element for non-selfadjoint and indefinite elliptic problems under minimal elliptic regularity assumption.
文摘We stress a basic criterion that shows in a simple way how a sequence of real-valued functions can converge uniformly when it is more or less evident that the sequence converges uniformly away from a finite number of points of the closure of its domain. For functions of a real variable, unlike in most classical textbooks our criterion avoids the search of extrema (by differential calculus) of their general term.
文摘In this paper, we introduced the notion of uniform convergence of the linear operators on the probabilistic nornied space, and the notion of probabilistic distance between the operators, which describes the above convergence completely. In terms of these notions, we obtained the essential features of the continuity of operators, and of the uniform convergence of operator sequences, and we also obtained the closure of continuity and complete continuity under the operation of the limit of uniform convergence.
文摘In this paper we study the dynamical behavior of a system ?approximated uniformly by a sequence ?of chaotic maps. We give examples to show that properties like sensitivity and denseness of periodic points need not be preserved under uniform convergence. We derive conditions under which some of the dynamical properties of the maps ?are preserved in .
文摘In this paper, we discuss the uniform convergence of the simple upwind scheme on the Shishkin mesh and the Bakhvalov-Shishkin mesh for solving a singularly perturbed Robin boundary value problem, and investigate the midpoint upwind scheme on the Shishkin mesh and the Bakhvalov-Shishkin mesh to achieve better uniform convergence. The elaborate ε-uniform pointwise estimates are proved by using the comparison principle and barrier functions. The numerical experiments support the theoretical results for the schemes on the meshes.
文摘We study the approximation properties of the extremal polynomials in Ap?norm and C?norm. We prove estimates for the rate of such convergence of the sequence of the extremal polynomials on domains with corners and special cusps.
基金supported by the National Key Research and Development Program of China(2019YFA0205700)Scientific Research Projects of Colleges and Universities in Hebei Province(JZX2023004)+2 种基金Research Program of Local Science and Technology Development under the Guidance of Central(216Z4402G)support from Ministry of Science and Higher Education of Russian Federation(project FFSG-2022-0001(122111700046-3),"Laboratory of perspective electrode materials for chemical power sources")support from"Yuanguang"Scholar Program of Hebei University of Technology
文摘It is well accepted that a lithiophilic interface can effectively regulate Li deposition behaviors,but the influence of the lithiophilic interface is gradually diminished upon continuous Li deposition that completely isolates Li from the lithiophilic metals.Herein,we perform in-depth studies on the creation of dynamic alloy interfaces upon Li deposition,arising from the exceptionally high diffusion coefficient of Hg in the amalgam solid solution.As a comparison,other metals such as Au,Ag,and Zn have typical diffusion coefficients of 10-20 orders of magnitude lower than that of Hg in the similar solid solution phases.This difference induces compact Li deposition pattern with an amalgam substrate even with a high areal capacity of 55 mAh cm^(-2).This finding provides new insight into the rational design of Li anode substrate for the stable cycling of Li metal batteries.
文摘Throughout this paper, we introduce a new hybrid iterative algorithm for finding a common element of the set of common fixed points of a finite family of uniformly asymptotically nonexpansive semigroups and the set of solutions of an equilibrium problem in the framework of Hilbert spaces. We then prove the strong convergence theorem with respect to the proposed iterative algorithm. Our results in this paper extend and improve some recent known results.
文摘In convex metric spaces, the sufficient and necessary conditions for Ishikawa iterative sequences of uniformly quasi-Lipschitzian mapping T with mixed errors to converge to a fixed point ate proved, and as a special case, in which T need not be continuous. The results of this paper improve and extend some recent results.
基金funded in part by Research on Intelligent Control System of Variable Fertilization of Deep Application Liquid Fertilizer(GXKS2022GKY003)Research on Vehicle Ranging System Based on Object Detection and Monocular Vision(2022KY0854).
文摘The spatial pattern of trees is an important feature of forests,and different spatial patterns of trees exhibit different ecological stability.Research has confirmed that natural forests with random patterns have higher biodiversity and stronger resistance to unstable factors such as pests and diseases.Even if they are disturbed or destroyed by unstable factors such as pests and diseases,they can still recover and rescue themselves;while artificial forests with uniform and clustered patterns have lower biodiversity and are susceptible to unstable factors such as pests and diseases.And once pests and diseases occur,it’s more difficult for them to recover.In order to promote the healthy and stable develop-ment of the forestry industry and protect the diversity of the biological environment,it is necessary to protect the random pattern of natural forests from being destroyed in the process of forest management,while effectively transforming the spatial pattern of artificial forests into a random pattern.Therefore,in order to ensure the convenient and accurate determination of the type of forest spatial pattern,research on methods for determining forest spatial pattern has become particularly important.Based on the theory of uniformity,this study proposes definitions and related theories of included exclusive sphere,included exclusive body,included random pattern,and included uniformity.Under the guidance of the definition of inclusion uniformity and related theories,and by using mathematical method,it is proved that the uniformity of inclusion(CL)is asymptotically subject to the Eq.18,Therefore,the relationship between the included uniformity(CL)and the number of trees in the sample plot was established,and the corresponding relationship formula was obtained,and then the determination of the spatial pattern type of trees was completed by using the corresponding relationship formula.Through rigorous reasoning and case verification,the determination method of forest spatial pattern is effective.