A Monte Carlo simulation technique has been used to model the electron transport' behavior, especially the electron density and energy distributions under the influence of a mirror magnetic field and a uniform ele...A Monte Carlo simulation technique has been used to model the electron transport' behavior, especially the electron density and energy distributions under the influence of a mirror magnetic field and a uniform electric field in a positive column of helium direct current(DC) gas discharge Graphs showing the electron density and energy distributions, and the percentage of electrons that reach the wall and the end of the positive column are presented. The results indicate that the mirror magnetic field can control the electron transport behavior in the positive column which are in good agreement with experimental results.展开更多
We consider the radiation from the beam electrons traveling in a strong uniform axial magnetic field and an axial alternating electric field of wavelength Aw generated by a voltage-supplied pill-box cavity. The beam e...We consider the radiation from the beam electrons traveling in a strong uniform axial magnetic field and an axial alternating electric field of wavelength Aw generated by a voltage-supplied pill-box cavity. The beam electrons emit genuine laser radiation that propagates only in the axial direction through free-electron two- quantum Stark radiation. We find that laser radiation takes place only at the expense of the axial kinetic energy when Aw 〈〈 c/(ωc/γ), where ωc/γ is the relativistic electron--cyclotron frequency. We formulate the laser power based on quantum-wiggler electrodynamics, and envision a laser of length lore with estimated power 0.1 GW/(kA) in the 10-4 cm wavelength range.展开更多
文摘A Monte Carlo simulation technique has been used to model the electron transport' behavior, especially the electron density and energy distributions under the influence of a mirror magnetic field and a uniform electric field in a positive column of helium direct current(DC) gas discharge Graphs showing the electron density and energy distributions, and the percentage of electrons that reach the wall and the end of the positive column are presented. The results indicate that the mirror magnetic field can control the electron transport behavior in the positive column which are in good agreement with experimental results.
文摘We consider the radiation from the beam electrons traveling in a strong uniform axial magnetic field and an axial alternating electric field of wavelength Aw generated by a voltage-supplied pill-box cavity. The beam electrons emit genuine laser radiation that propagates only in the axial direction through free-electron two- quantum Stark radiation. We find that laser radiation takes place only at the expense of the axial kinetic energy when Aw 〈〈 c/(ωc/γ), where ωc/γ is the relativistic electron--cyclotron frequency. We formulate the laser power based on quantum-wiggler electrodynamics, and envision a laser of length lore with estimated power 0.1 GW/(kA) in the 10-4 cm wavelength range.