In the present paper,we mostly focus on P_(p)^(2)-statistical convergence.We will look into the uniform integrability via the power series method and its characterizations for double sequences.Also,the notions of P_(p...In the present paper,we mostly focus on P_(p)^(2)-statistical convergence.We will look into the uniform integrability via the power series method and its characterizations for double sequences.Also,the notions of P_(p)^(2)-statistically Cauchy sequence,P_(p)^(2)-statistical boundedness and core for double sequences will be described in addition to these findings.展开更多
Let x (xn)≥1 be a martingale on a noncommutative probability space n (M, r) and (wn)n≥1 a sequence of positive numbers such that Wn = ∑ k=1^n wk →∞ as n →∞ We prove that x = (x.)n≥1 converges in E(M...Let x (xn)≥1 be a martingale on a noncommutative probability space n (M, r) and (wn)n≥1 a sequence of positive numbers such that Wn = ∑ k=1^n wk →∞ as n →∞ We prove that x = (x.)n≥1 converges in E(M) if and only if (σn(x)n≥1 converges in E(.hd), where E(A//) is a noncommutative rearrangement invariant Banach function space with the Fatou property and σn(x) is given by σn(x) = 1/Wn ∑k=1^n wkxk, n=1, 2, .If in addition, E(Ad) has absolutely continuous norm, then, (an(x))≥1 converges in E(.M) if and only if x = (Xn)n≥1 is uniformly integrable and its limit in measure topology x∞∈ E(M).展开更多
For weighted sums of the form?j=1kn anj Xnj\sum{_{j=1}^{k_(n)}}a_({nj})X_({nj})where{a_(nj),1?j?k_(n)↑∞,n?1}is a real constant array and{X_(aj),1≤j≤k n,n≥1}is a rowwise independent,zero mean,random element array ...For weighted sums of the form?j=1kn anj Xnj\sum{_{j=1}^{k_(n)}}a_({nj})X_({nj})where{a_(nj),1?j?k_(n)↑∞,n?1}is a real constant array and{X_(aj),1≤j≤k n,n≥1}is a rowwise independent,zero mean,random element array in a real separable Banach space of typep,we establishL r convergence theorem and a general weak law of large numbers respectively,conversely,we characterize Banach spaces of typep in terms of convergence inr-th mean and probability for such weighted sums.展开更多
In this paper we shall characterize the large deviation principles(abbreviated to LDP) of Donsker-Varadhan of a Markov process both for the weak convergence topology and for theτ- topology,by means of a hyper-exponen...In this paper we shall characterize the large deviation principles(abbreviated to LDP) of Donsker-Varadhan of a Markov process both for the weak convergence topology and for theτ- topology,by means of a hyper-exponential recurrence property.A Lyapunov criterion for this type of recurrence property is presented.These results are applied to countable Markov chains,unidimensional diffusions,elliptic or hypoelliptic diffusions on Riemannian manifolds.Several counter-examples are equally presented.展开更多
Abstract Let x = (xn)n≥1 be a martingale on a noncommutative probability space (М,τ) and (Wn)n≥1 a sequence of positive numbers such that Wn =∑^n_k=1 wk→∞ as n→∞. We prove that x = (Xn)n≥1 converges...Abstract Let x = (xn)n≥1 be a martingale on a noncommutative probability space (М,τ) and (Wn)n≥1 a sequence of positive numbers such that Wn =∑^n_k=1 wk→∞ as n→∞. We prove that x = (Xn)n≥1 converges bilaterally almost uniformly (b.a.u.) if and only if the weighted average (σan(x))n≥1 of x converges b.a.u, to the same limit under some condition, where σn(x) is given by σn(x)=1/Wn ^n∑_k=1 wkxk,n=1,2,… Furthermore, we prove that x = (xn)n≥1 converges in Lp(М) if and only if (σ'n(x))n≥1 converges in Lp(М), where 1 ≤p 〈 ∞ .We also get a criterion of uniform integrability for a family in L1(М).展开更多
X charts with estimated control limits are commonly used in practice and treated as if the in-control process parameters were known. However, the former can behave quite differently from the latter. To understand the ...X charts with estimated control limits are commonly used in practice and treated as if the in-control process parameters were known. However, the former can behave quite differently from the latter. To understand the differences, it is necessary to study the run length distribution (RLD), its mean (ARL) and standard deviation (SDRL) of the X charts when the control limits are estimated. However, ARL and SDRL are integrals over an infinite region with a boundless integrand, the finiteness has not been proved in literature. In this paper, we show the finiteness and uniform integrability of ARL and SDRL. Furthermore, we numerically evaluate the ARL, SDRL and the RLD using number theory method. A numerical study is conducted to assess the performance of the proposed method and the results are compared with those given by Quesenberry and Chen.展开更多
文摘In the present paper,we mostly focus on P_(p)^(2)-statistical convergence.We will look into the uniform integrability via the power series method and its characterizations for double sequences.Also,the notions of P_(p)^(2)-statistically Cauchy sequence,P_(p)^(2)-statistical boundedness and core for double sequences will be described in addition to these findings.
基金supported by the National Natural Science Foundation of China (11071190)
文摘Let x (xn)≥1 be a martingale on a noncommutative probability space n (M, r) and (wn)n≥1 a sequence of positive numbers such that Wn = ∑ k=1^n wk →∞ as n →∞ We prove that x = (x.)n≥1 converges in E(M) if and only if (σn(x)n≥1 converges in E(.hd), where E(A//) is a noncommutative rearrangement invariant Banach function space with the Fatou property and σn(x) is given by σn(x) = 1/Wn ∑k=1^n wkxk, n=1, 2, .If in addition, E(Ad) has absolutely continuous norm, then, (an(x))≥1 converges in E(.M) if and only if x = (Xn)n≥1 is uniformly integrable and its limit in measure topology x∞∈ E(M).
基金Supported by the National Natural Science F oundation of China(No.10071058)
文摘For weighted sums of the form?j=1kn anj Xnj\sum{_{j=1}^{k_(n)}}a_({nj})X_({nj})where{a_(nj),1?j?k_(n)↑∞,n?1}is a real constant array and{X_(aj),1≤j≤k n,n≥1}is a rowwise independent,zero mean,random element array in a real separable Banach space of typep,we establishL r convergence theorem and a general weak law of large numbers respectively,conversely,we characterize Banach spaces of typep in terms of convergence inr-th mean and probability for such weighted sums.
基金This work is partially supported by the NSF of China and the Foundation of Y.D.Fok.
文摘In this paper we shall characterize the large deviation principles(abbreviated to LDP) of Donsker-Varadhan of a Markov process both for the weak convergence topology and for theτ- topology,by means of a hyper-exponential recurrence property.A Lyapunov criterion for this type of recurrence property is presented.These results are applied to countable Markov chains,unidimensional diffusions,elliptic or hypoelliptic diffusions on Riemannian manifolds.Several counter-examples are equally presented.
基金supported by National Natural Science Foundation of China (Grant No.11071190)
文摘Abstract Let x = (xn)n≥1 be a martingale on a noncommutative probability space (М,τ) and (Wn)n≥1 a sequence of positive numbers such that Wn =∑^n_k=1 wk→∞ as n→∞. We prove that x = (Xn)n≥1 converges bilaterally almost uniformly (b.a.u.) if and only if the weighted average (σan(x))n≥1 of x converges b.a.u, to the same limit under some condition, where σn(x) is given by σn(x)=1/Wn ^n∑_k=1 wkxk,n=1,2,… Furthermore, we prove that x = (xn)n≥1 converges in Lp(М) if and only if (σ'n(x))n≥1 converges in Lp(М), where 1 ≤p 〈 ∞ .We also get a criterion of uniform integrability for a family in L1(М).
基金This research is is partially supported by the National Natural Science Foundation of China.
文摘X charts with estimated control limits are commonly used in practice and treated as if the in-control process parameters were known. However, the former can behave quite differently from the latter. To understand the differences, it is necessary to study the run length distribution (RLD), its mean (ARL) and standard deviation (SDRL) of the X charts when the control limits are estimated. However, ARL and SDRL are integrals over an infinite region with a boundless integrand, the finiteness has not been proved in literature. In this paper, we show the finiteness and uniform integrability of ARL and SDRL. Furthermore, we numerically evaluate the ARL, SDRL and the RLD using number theory method. A numerical study is conducted to assess the performance of the proposed method and the results are compared with those given by Quesenberry and Chen.