A new method to predict the ultimate strength of fiber reinforced composites under arbitrary load condition is introduced. The micromechanics strength theory is used to perform the final failure prediction of composit...A new method to predict the ultimate strength of fiber reinforced composites under arbitrary load condition is introduced. The micromechanics strength theory is used to perform the final failure prediction of composite laminates. The theory is based on unit cell analytic model which can provide the ply composite material properties by only using the constituent fiber and matrix properties and the laminate geometric parameters without knowing any experimental information of the laminates. To show that this method is suitable for predicting the strength of composite laminates, the micromechanics strength theory is ranked by comparing it with all the micro-level and the best two macro-level theories chosen from the World Wide Failure Exercise. The results show that this method can be used for predicting strength of any composite laminates and provide a direct reference for composite optimum design.展开更多
Auxetic material structures exhibit a negative Poisson ratio. The structure expands in the axial and transverse directions under tensile loading and vice versa under compression loading. Many fabricated designs for au...Auxetic material structures exhibit a negative Poisson ratio. The structure expands in the axial and transverse directions under tensile loading and vice versa under compression loading. Many fabricated designs for auxetic materials exist such as re-entrant hexagonal, chiral, and arrowhead geometries. This paper studies the unit cell of the re-entrant hexagonal geometry to understand how changing the internal angle and fillet radius of the structure affects the Poisson’s ratio. The material chosen for this study is acrylonitrile butadiene styrene (ABS) due to its availability and frequent use in additive manufacturing. The study was based on finite element analysis. It is observed that the direction of load applied to the unit cell affects the unit cell strain, Poisson’s ratio, and maximum load capacity before failure responses. It is noticed that the re-entrant cell starts by showing a standard non-auxetic behavior until it reaches a specific axial strain value. A quadratic correlation is identified between axial and transverse strain. Designing an auxetic structure starts with understanding the behavior of a unit cell structure. The auxetic structure design is a complex process that requires a compromise between auxetic property to be achieved and load capacity via avoiding stress concentration zones.展开更多
In this paper, 2201 and 2212 phases as the corresponding precursor of forming 2212 and 2223 phases are discussed,and the constructive process of unit cell of 2201 phase is ascertained by XRD and chemical kinetics me...In this paper, 2201 and 2212 phases as the corresponding precursor of forming 2212 and 2223 phases are discussed,and the constructive process of unit cell of 2201 phase is ascertained by XRD and chemical kinetics method. Subsequently, the process of 221展开更多
This presentation predicts the elastic properties of three-dimensional(3D)orthogonal woven composite(3DOWC)by finite element analysis based on micro/meso repeated unit cell(RUC)models.First,the properties of fiber yar...This presentation predicts the elastic properties of three-dimensional(3D)orthogonal woven composite(3DOWC)by finite element analysis based on micro/meso repeated unit cell(RUC)models.First,the properties of fiber yarn are obtained by analysis on a micro-scale RUC model assuming fibers in a hexagonal distribution pattern in the polymer matrix.Then a full thickness meso-scale RUC model including weft yarns,warp yarns,Z-yarns and pure resin zones is established and full stiffness matrix of the 3DOWC including the in-plane and flexural constants are predicted.For thick 3DOWC with large number of weft,warp layers,an alternative analysis method is proposed in which an inner meso-RUC and a surface meso-RUC are established,respectively.Then the properties of 3DOWC are deduced based on laminate theory and properties of the inner and surface layers.The predicted results by the above two alternative methods are in good experimental agreement.展开更多
The Wigner-Seitz unit cell (rhombus) for a honeycomb lattice fails to establish a k-vector in the 2D space, which is required for the Bloch electron dynamics. Phonon motion cannot be discussed in the triangular coordi...The Wigner-Seitz unit cell (rhombus) for a honeycomb lattice fails to establish a k-vector in the 2D space, which is required for the Bloch electron dynamics. Phonon motion cannot be discussed in the triangular coordinates, either. In this paper, we propose a rectangular 4-atom unit cell model, which allows us to discuss the electron and phonon (wave packets) motion in the k-space. The present paper discusses the band structure of graphene based on the rectangular 4-atom unit cell model to establish an appropriate k-vector for the Bloch electron dynamics. To obtain the band energy of a Bloch electron in graphene, we extend the tight-binding calculations for the Wigner-Seitz (2-atom unit cell) model of Reich et al. (Physical Review B, 66, Article ID: 035412 (2002)) to the rectangular 4-atom unit cell model. It is shown that the graphene band structure based on the rectangular 4-atom unit cell model reveals the same band structure of the graphene based on the Wigner-Seitz 2-atom unit cell model;the π-band energy holds a linear dispersion (ε−k ) relations near the Fermi energy (crossing points of the valence and the conduction bands) in the first Brillouin zone of the rectangular reciprocal lattice. We then confirm the suitability of the proposed rectangular (orthogonal) unit cell model for graphene in order to establish a 2D k-vector responsible for the Bloch electron (wave packet) dynamics in graphene.展开更多
Repeated Unit Cell(RUC)is a useful tool in micromechanical analysis of composites using Displacement-based Finite Element(DFE)method,and merely applying Periodic Displacement Boundary Conditions(PDBCs)to RUC is ...Repeated Unit Cell(RUC)is a useful tool in micromechanical analysis of composites using Displacement-based Finite Element(DFE)method,and merely applying Periodic Displacement Boundary Conditions(PDBCs)to RUC is almost a standard practice to conduct such analysis.Two basic questions arising from this practice are whether Periodic Traction Boundary Conditions(PTBCs,also known as traction continuity conditions)are guaranteed and whether the solution is independent of selection of RUCs.This paper presents the theoretical aspects to tackle these questions,which unify the strong form,weak form and DFE method of the micromechanical problem together.Specifically,the solution’s independence of selection of RUCs is dealt with on the strong form side,PTBCs are derived from the weak form as natural boundary conditions,and the validity of merely applying PDBCs in micromechanical Finite Element(FE)analysis is proved by referring to its intrinsic connection to the strong form and weak form.Key points in the theoretical aspects are demonstrated by illustrative examples,and the merits of setting micromechanical FE analysis under the background of a clear theoretical framework are highlighted in the efficient selection of RUCs for Uni Directional(UD)fiber-reinforced composites.展开更多
Zero resistance and Meissner effect are two crucial experimental evidences of superconductivity in determining a new kind of superconductor, which can be detected by transport and diamagnetic measurements. In this pap...Zero resistance and Meissner effect are two crucial experimental evidences of superconductivity in determining a new kind of superconductor, which can be detected by transport and diamagnetic measurements. In this paper, we briefly review the main transport and magnetization results on the one unit cell (1-UC) FeSe films grown on SrTiO3 (STO) substrates from our team in recent years, which identify the high temperature superconductivity in 1-UC FeSe films.展开更多
From the crystal chemistry and icosahedral phase, two kinds of coordinational polyhedron with 8-fold rotational symmetry——hexakaicahedra and bicapped antiprism were possibly suggested and their one- and two-dimensio...From the crystal chemistry and icosahedral phase, two kinds of coordinational polyhedron with 8-fold rotational symmetry——hexakaicahedra and bicapped antiprism were possibly suggested and their one- and two-dimensional quasilattices were deducted. According to the principle of Bravais in conventional crystallography, four kinds of two-dimensional unit cell have been defined in 5, 8, 10, 12-fold rotational symmetry quasicrystal. The authors considered that quasicrystal is a kind of crystal which possesses an incommensurable translational period. This kind of translation is carried out by inflation or deflation symmetry operation.展开更多
Large-area patterned films of boron nanowires(BNWs) are fabricated at various densities by chemical vapor deposition(CVD). Different widths of unit-cell of Mo masks are used as templates. The widths of unit-cell o...Large-area patterned films of boron nanowires(BNWs) are fabricated at various densities by chemical vapor deposition(CVD). Different widths of unit-cell of Mo masks are used as templates. The widths of unit-cell of Mo masks are100 μm, 150 μm, and 200 μm, respectively. The distance between unit cells is 50 μm. The BNWs have an average diameter of about 20 nm and lengths of 10 μm–20 μm. High-resolution transmission electron microscopy analysis shows that each nanowire has a β-tetragonal structure with good crystallization. Field emission measurements of the BNW films show that their turn-on electric fields decrease with width of unit-cell increasing.展开更多
A diesel engine of conventional trucks has a low efficiency under the idling condition,leading to a high cost for heating or cooling in the cab during night. The solution to this problem will have great significance o...A diesel engine of conventional trucks has a low efficiency under the idling condition,leading to a high cost for heating or cooling in the cab during night. The solution to this problem will have great significance on energy conservation and emission reduction. A new auxiliary power unit of solid oxide fuel cell( SOFCAPU) with high efficiency solves this problem perfectly. Heat pump air conditioner is considered as a promising device for the application of SOFC-APU with a high cooling and heating efficiency. To make a quantitative analysis for the application of SOFC-APU,a model is built in Matlab / Simulink. The diesel engine model and SOFC-APU model are fitted based on some experimental data of SOFC-APU and diesel engine during the idling operation. An analysis of the application of SOFC-APU on different trucks in Northeast China is comprehensively made,including efficiency and emission.展开更多
The organization of the compartment of mesenchymal stem cells is still obscure. Two types of human stromal precursor cells are known. Both of them are analyzed in in vitro system: mesenchymal multipotent stromal cells...The organization of the compartment of mesenchymal stem cells is still obscure. Two types of human stromal precursor cells are known. Both of them are analyzed in in vitro system: mesenchymal multipotent stromal cells (MMSC) and fibroblast colony forming units (CFU-F). The aim of this study was to compare the main characteristics of MMSC and CFU-F derived from the bone marrow of 24 healthy donors. Growth and differentiation parameters, as well as relative expression levels of different genes were analyzed in MMSC and CFU-F. MMSC were cultivated for 5 passages. CFU-F concentration was determined for each bone marrow sample. The data obtained demonstrated the heterogeneity and hierarchical organization of both studied populations of stromal precursor cells-MMSC and CFU-F. These two types of stromal precursor cells turned to be different in most parameters studied. Altogether MMSC seemed to be more immature cells than CFU-F and took up the higher position in hierarchical tree of mesenchymal stem cells. The rate of differentiation and proliferative potential decreased with the donor’s age in both populations MMSC and CFU-F.展开更多
Small-cell HSY-S zeolite prepared by the gas-phase ultra-stable method had been researched and developed,and industrial preparation tests of HSY-S have been successfully carried out for the first time.The acid resista...Small-cell HSY-S zeolite prepared by the gas-phase ultra-stable method had been researched and developed,and industrial preparation tests of HSY-S have been successfully carried out for the first time.The acid resistance of industrially prepared HSY-S was investigated by acid solutions with different pH values.The structures and properties of HSY-S and its acid-treated samples were characterized by XRD,XRF,BET,and IR.Results show that the HSY-S samples have the characteristics of high crystallinity,good stability,large specific surface area,and good acid resistance.展开更多
In this paper I access the degree of approximation of known symbolic approach to solving of Ginzburg-Landau (GL) equations using variational method and a concept of vortex lattice with circular unit cells, refine it i...In this paper I access the degree of approximation of known symbolic approach to solving of Ginzburg-Landau (GL) equations using variational method and a concept of vortex lattice with circular unit cells, refine it in a clear and concise way, identify and eliminate the errors. Also, I will improve its accuracy by providing for the first time precise dependencies of the variational parameters;correct and calculate magnetisation, compare it with the one calculated numerically and conclude they agree within 98.5% or better for any value of the GL parameter k and at magnetic field , which is good basis for many engineering applications. As a result, a theoretical tool is developed using known symbolic solutions of GL equations with accuracy surpassing that of any other known symbolic solution and approaching that of numerical one.展开更多
Previous studies have shown that models of depression exhibit structural and functional changes to the neurovascular unit. Thus, we hypothesized that diabetes-related depression might be associated with damage to the ...Previous studies have shown that models of depression exhibit structural and functional changes to the neurovascular unit. Thus, we hypothesized that diabetes-related depression might be associated with damage to the hippocampal neurovascular unit. To test this hypothesis, neurons, astrocytes and endothelial cells were isolated from the brain tissues of rat embryos and newborn rats. Hippocampal neurovascular unit co-cultures were produced using the Transwell chamber co-culture system. A model of diabetes-related depression was generated by adding 150 mM glucose and 200 μM corticosterone to the culture system and compared with the neuron + astrocyte and astrocyte + endothelial cell co-culture systems. Western blot assay was used to measure levels of structural proteins in the hippocampal neurovascular unit co-culture system. Levels of basic fibroblast growth factor, angiogenic factor 1, glial cell line–derived neurotrophic factor, transforming growth factor β1, leukemia inhibitory factor and 5-hydroxytryptamine in the hippocampal neurovascular unit co-culture system were measured by enzyme-linked immunosorbent assay. Flow cytometry and terminal deoxynucleotidyl transferase(TdT)-mediated dUTP nick end labeling staining was used to assess neuronal apoptosis in the hippocampal neurovascular unit. The neurovascular unit triple cell co-culture system had better barrier function and higher levels of structural and secretory proteins than the double cell co-culture systems. In comparison, in the model of diabetes-related depression, the neurovascular unit was damaged with decreased barrier function, poor structural integrity and impaired secretory function. Moreover, neuronal apoptosis was markedly increased, and 5-hydroxytryptamine levels were reduced. These results suggest that diabetes-related depression is associated with structural and functional damage to the neurovascular unit. Our findings provide a foundation for further studies on the pathogenesis of diabetes-related depression.展开更多
Non-adherent bone marrow cell-derived mesenchymal stem cells from C57BL/6J mice were sepa- rated and cultured using the "pour-off" method. Non-adherent bone marrow cell-derived mesen- chymal stem ceils developed col...Non-adherent bone marrow cell-derived mesenchymal stem cells from C57BL/6J mice were sepa- rated and cultured using the "pour-off" method. Non-adherent bone marrow cell-derived mesen- chymal stem ceils developed colony-forming unit-fibroblasts, and could be expanded by supple- mentation with epidermal growth factor. Immunocytochemistry showed that the non-adherent bone marrow cell-derived mesenchymal stem cells exposed to basic fibroblast growth factor/epidermal growth factor/nerve growth factor expressed the neuron specific markers, neurofilament-200 and NeuN, in vitro. Non-adherent bone marrow cell-derived mesenchymal stem cells from 13-galactosidase transgenic mice were also transplanted into focal ischemic brain (right corpus striatum) of C57BL/6J mice. At 8 weeks, cells positive for LacZ and 13-galactosidase staining were observed in the ischemic tissues, and cells co-labeled with both 13-galactosidase and NeuN were seen by double immunohistochemical staining. These findings suggest that the non-adherent bone marrow cell-derived mesenchymal stem cells could differentiate into neuronal-like cells in vitro and in vivo.展开更多
Introduction:In the adult human breast,hyperplastic enlarged lobular unit(HELU) and atypical ductal hyperplasia(ADH) are two common abnormalities that frequently coexist with ductal carcinoma in situ(DCIS).For this re...Introduction:In the adult human breast,hyperplastic enlarged lobular unit(HELU) and atypical ductal hyperplasia(ADH) are two common abnormalities that frequently coexist with ductal carcinoma in situ(DCIS).For this reason,they have been proposed as the early steps in a biological continuum toward breast cancer.Methods:We investigated in silico the expression of 369 genes experimentally recognized as involved in establishing and maintaining epithelial cell identity and mammary gland remodeling,in HELUs or ADHs with respect to the corresponding patient-matched normal tissue.Results:Despite the common luminal origin,HELUs and ADHs proved to be characterized by distinct gene profiles that overlap for 5 genes only.While HELUs were associated with the overexpression of progesterone receptor(PGR),ADHs were characterized by the overexpression of estrogen receptor 1(ESR1) coupled with the overexpression of some proliferation-associated genes.Conclusions:This unexpected finding contradicts the notion that in differentiated luminal cells the expression of estrogen receptor(ER) is dissociated from cell proliferation and suggests that the establishing of an ER-dependent signaling is able to sustain cell proliferation in an autocrine manner as an early event in tumor initiation.Although clinical evidence indicates that only a fraction of HELUs and ADHs evolve to invasive cancer,present findings warn that exposure to synthetic progestins,frequently administered as hormone-replacement therapy,and estrogens,when abnormally produced by adipose cells and persistently present in the stroma surrounding the mammary gland,may cause these hyperplastic lesions.展开更多
AIM To determine if packed red blood cell transfusions contribute to the development of parenteral nutrition associated liver disease. METHODS A retrospective chart review of 49 premature infants on parenteral nutriti...AIM To determine if packed red blood cell transfusions contribute to the development of parenteral nutrition associated liver disease. METHODS A retrospective chart review of 49 premature infants on parenteral nutrition for > 30 d who received packed red blood cell(PRBC) transfusions was performed. Parenteral nutrition associated liver disease was primarily defined by direct bilirubin(db) > 2.0 mg/dL. A high transfusion cohort was defined as receiving > 75 mL packed red blood cells(the median value). KaplanMeier plots estimated the median volume of packedred blood cells received in order to develop parenteral nutrition associated liver disease.RESULTS Parenteral nutritional associated liver disease(PNALD) was noted in 21(43%) infants based on db. Among the 27 high transfusion infants, PNALD was present in 17(64%) based on elevated direct bilirubin which was significantly greater than the low transfusion recipients. About 50% of the infants, who were transfused 101-125 mL packed red blood cells, developed PNALD based on elevation of direct bilirubin. All infants who were transfused more than 200 mL of packed red blood cells developed PNALD. Similar results were seen when using elevation of aspartate transaminase or alanine transaminase to define PNALD.CONCLUSION In this retrospective, pilot study there was a statistically significant correlation between the volume of PRBC transfusions received by premature infants and the development of PNALD.展开更多
基金Funded in part by China Postdoctoral Science Foundation(No.2013M541574)Hi-tech Research and Development Program of China(No.2012AA040209)
文摘A new method to predict the ultimate strength of fiber reinforced composites under arbitrary load condition is introduced. The micromechanics strength theory is used to perform the final failure prediction of composite laminates. The theory is based on unit cell analytic model which can provide the ply composite material properties by only using the constituent fiber and matrix properties and the laminate geometric parameters without knowing any experimental information of the laminates. To show that this method is suitable for predicting the strength of composite laminates, the micromechanics strength theory is ranked by comparing it with all the micro-level and the best two macro-level theories chosen from the World Wide Failure Exercise. The results show that this method can be used for predicting strength of any composite laminates and provide a direct reference for composite optimum design.
文摘Auxetic material structures exhibit a negative Poisson ratio. The structure expands in the axial and transverse directions under tensile loading and vice versa under compression loading. Many fabricated designs for auxetic materials exist such as re-entrant hexagonal, chiral, and arrowhead geometries. This paper studies the unit cell of the re-entrant hexagonal geometry to understand how changing the internal angle and fillet radius of the structure affects the Poisson’s ratio. The material chosen for this study is acrylonitrile butadiene styrene (ABS) due to its availability and frequent use in additive manufacturing. The study was based on finite element analysis. It is observed that the direction of load applied to the unit cell affects the unit cell strain, Poisson’s ratio, and maximum load capacity before failure responses. It is noticed that the re-entrant cell starts by showing a standard non-auxetic behavior until it reaches a specific axial strain value. A quadratic correlation is identified between axial and transverse strain. Designing an auxetic structure starts with understanding the behavior of a unit cell structure. The auxetic structure design is a complex process that requires a compromise between auxetic property to be achieved and load capacity via avoiding stress concentration zones.
文摘In this paper, 2201 and 2212 phases as the corresponding precursor of forming 2212 and 2223 phases are discussed,and the constructive process of unit cell of 2201 phase is ascertained by XRD and chemical kinetics method. Subsequently, the process of 221
基金BASTRI Subtopic Research about Digital Sampler Technology of Body Structure Performance Study Based on Big Data Calculation Model,China(No.MIIT Civil aircraft special purpose MJ-2017-F-20)
文摘This presentation predicts the elastic properties of three-dimensional(3D)orthogonal woven composite(3DOWC)by finite element analysis based on micro/meso repeated unit cell(RUC)models.First,the properties of fiber yarn are obtained by analysis on a micro-scale RUC model assuming fibers in a hexagonal distribution pattern in the polymer matrix.Then a full thickness meso-scale RUC model including weft yarns,warp yarns,Z-yarns and pure resin zones is established and full stiffness matrix of the 3DOWC including the in-plane and flexural constants are predicted.For thick 3DOWC with large number of weft,warp layers,an alternative analysis method is proposed in which an inner meso-RUC and a surface meso-RUC are established,respectively.Then the properties of 3DOWC are deduced based on laminate theory and properties of the inner and surface layers.The predicted results by the above two alternative methods are in good experimental agreement.
文摘The Wigner-Seitz unit cell (rhombus) for a honeycomb lattice fails to establish a k-vector in the 2D space, which is required for the Bloch electron dynamics. Phonon motion cannot be discussed in the triangular coordinates, either. In this paper, we propose a rectangular 4-atom unit cell model, which allows us to discuss the electron and phonon (wave packets) motion in the k-space. The present paper discusses the band structure of graphene based on the rectangular 4-atom unit cell model to establish an appropriate k-vector for the Bloch electron dynamics. To obtain the band energy of a Bloch electron in graphene, we extend the tight-binding calculations for the Wigner-Seitz (2-atom unit cell) model of Reich et al. (Physical Review B, 66, Article ID: 035412 (2002)) to the rectangular 4-atom unit cell model. It is shown that the graphene band structure based on the rectangular 4-atom unit cell model reveals the same band structure of the graphene based on the Wigner-Seitz 2-atom unit cell model;the π-band energy holds a linear dispersion (ε−k ) relations near the Fermi energy (crossing points of the valence and the conduction bands) in the first Brillouin zone of the rectangular reciprocal lattice. We then confirm the suitability of the proposed rectangular (orthogonal) unit cell model for graphene in order to establish a 2D k-vector responsible for the Bloch electron (wave packet) dynamics in graphene.
文摘Repeated Unit Cell(RUC)is a useful tool in micromechanical analysis of composites using Displacement-based Finite Element(DFE)method,and merely applying Periodic Displacement Boundary Conditions(PDBCs)to RUC is almost a standard practice to conduct such analysis.Two basic questions arising from this practice are whether Periodic Traction Boundary Conditions(PTBCs,also known as traction continuity conditions)are guaranteed and whether the solution is independent of selection of RUCs.This paper presents the theoretical aspects to tackle these questions,which unify the strong form,weak form and DFE method of the micromechanical problem together.Specifically,the solution’s independence of selection of RUCs is dealt with on the strong form side,PTBCs are derived from the weak form as natural boundary conditions,and the validity of merely applying PDBCs in micromechanical Finite Element(FE)analysis is proved by referring to its intrinsic connection to the strong form and weak form.Key points in the theoretical aspects are demonstrated by illustrative examples,and the merits of setting micromechanical FE analysis under the background of a clear theoretical framework are highlighted in the efficient selection of RUCs for Uni Directional(UD)fiber-reinforced composites.
基金supported by the National Basic Research Program of China(Grant Nos.2013CB934600 and 2012CB921300)the National Natural Science Foundation of China(Grant Nos.11222434 and 11174007)the Research Fund for the Doctoral Program of Higher Education(RFDP)of China
文摘Zero resistance and Meissner effect are two crucial experimental evidences of superconductivity in determining a new kind of superconductor, which can be detected by transport and diamagnetic measurements. In this paper, we briefly review the main transport and magnetization results on the one unit cell (1-UC) FeSe films grown on SrTiO3 (STO) substrates from our team in recent years, which identify the high temperature superconductivity in 1-UC FeSe films.
基金Project supported by the National Natural Science Foundation of China.
文摘From the crystal chemistry and icosahedral phase, two kinds of coordinational polyhedron with 8-fold rotational symmetry——hexakaicahedra and bicapped antiprism were possibly suggested and their one- and two-dimensional quasilattices were deducted. According to the principle of Bravais in conventional crystallography, four kinds of two-dimensional unit cell have been defined in 5, 8, 10, 12-fold rotational symmetry quasicrystal. The authors considered that quasicrystal is a kind of crystal which possesses an incommensurable translational period. This kind of translation is carried out by inflation or deflation symmetry operation.
基金supported by the National Basic Research Program of China(Grant Nos.2013CB933604)the National Natural Science Foundation of China(Grant No.51572290)the Fund from the Chinese Academy of Sciences(Grant Nos.1731300500015 and XDB07030100)
文摘Large-area patterned films of boron nanowires(BNWs) are fabricated at various densities by chemical vapor deposition(CVD). Different widths of unit-cell of Mo masks are used as templates. The widths of unit-cell of Mo masks are100 μm, 150 μm, and 200 μm, respectively. The distance between unit cells is 50 μm. The BNWs have an average diameter of about 20 nm and lengths of 10 μm–20 μm. High-resolution transmission electron microscopy analysis shows that each nanowire has a β-tetragonal structure with good crystallization. Field emission measurements of the BNW films show that their turn-on electric fields decrease with width of unit-cell increasing.
基金AVL LIST GM BH(A-8020 Graz,Hans-List-Platz 1)for its funding
文摘A diesel engine of conventional trucks has a low efficiency under the idling condition,leading to a high cost for heating or cooling in the cab during night. The solution to this problem will have great significance on energy conservation and emission reduction. A new auxiliary power unit of solid oxide fuel cell( SOFCAPU) with high efficiency solves this problem perfectly. Heat pump air conditioner is considered as a promising device for the application of SOFC-APU with a high cooling and heating efficiency. To make a quantitative analysis for the application of SOFC-APU,a model is built in Matlab / Simulink. The diesel engine model and SOFC-APU model are fitted based on some experimental data of SOFC-APU and diesel engine during the idling operation. An analysis of the application of SOFC-APU on different trucks in Northeast China is comprehensively made,including efficiency and emission.
文摘The organization of the compartment of mesenchymal stem cells is still obscure. Two types of human stromal precursor cells are known. Both of them are analyzed in in vitro system: mesenchymal multipotent stromal cells (MMSC) and fibroblast colony forming units (CFU-F). The aim of this study was to compare the main characteristics of MMSC and CFU-F derived from the bone marrow of 24 healthy donors. Growth and differentiation parameters, as well as relative expression levels of different genes were analyzed in MMSC and CFU-F. MMSC were cultivated for 5 passages. CFU-F concentration was determined for each bone marrow sample. The data obtained demonstrated the heterogeneity and hierarchical organization of both studied populations of stromal precursor cells-MMSC and CFU-F. These two types of stromal precursor cells turned to be different in most parameters studied. Altogether MMSC seemed to be more immature cells than CFU-F and took up the higher position in hierarchical tree of mesenchymal stem cells. The rate of differentiation and proliferative potential decreased with the donor’s age in both populations MMSC and CFU-F.
基金The authors gratefully acknowledge the funding of the project by SINOPEC(No.118001-6).
文摘Small-cell HSY-S zeolite prepared by the gas-phase ultra-stable method had been researched and developed,and industrial preparation tests of HSY-S have been successfully carried out for the first time.The acid resistance of industrially prepared HSY-S was investigated by acid solutions with different pH values.The structures and properties of HSY-S and its acid-treated samples were characterized by XRD,XRF,BET,and IR.Results show that the HSY-S samples have the characteristics of high crystallinity,good stability,large specific surface area,and good acid resistance.
文摘In this paper I access the degree of approximation of known symbolic approach to solving of Ginzburg-Landau (GL) equations using variational method and a concept of vortex lattice with circular unit cells, refine it in a clear and concise way, identify and eliminate the errors. Also, I will improve its accuracy by providing for the first time precise dependencies of the variational parameters;correct and calculate magnetisation, compare it with the one calculated numerically and conclude they agree within 98.5% or better for any value of the GL parameter k and at magnetic field , which is good basis for many engineering applications. As a result, a theoretical tool is developed using known symbolic solutions of GL equations with accuracy surpassing that of any other known symbolic solution and approaching that of numerical one.
基金supported by the National Natural Science Foundation of China,No.81373578(to YHW),81573965(to YHW)the Natural Science Foundation of Hunan Province of China,No.2017JJ3241(to JL)the Education Department Scientific Research Foundation of Hunan Province of China,No.17C1229(to JL)
文摘Previous studies have shown that models of depression exhibit structural and functional changes to the neurovascular unit. Thus, we hypothesized that diabetes-related depression might be associated with damage to the hippocampal neurovascular unit. To test this hypothesis, neurons, astrocytes and endothelial cells were isolated from the brain tissues of rat embryos and newborn rats. Hippocampal neurovascular unit co-cultures were produced using the Transwell chamber co-culture system. A model of diabetes-related depression was generated by adding 150 mM glucose and 200 μM corticosterone to the culture system and compared with the neuron + astrocyte and astrocyte + endothelial cell co-culture systems. Western blot assay was used to measure levels of structural proteins in the hippocampal neurovascular unit co-culture system. Levels of basic fibroblast growth factor, angiogenic factor 1, glial cell line–derived neurotrophic factor, transforming growth factor β1, leukemia inhibitory factor and 5-hydroxytryptamine in the hippocampal neurovascular unit co-culture system were measured by enzyme-linked immunosorbent assay. Flow cytometry and terminal deoxynucleotidyl transferase(TdT)-mediated dUTP nick end labeling staining was used to assess neuronal apoptosis in the hippocampal neurovascular unit. The neurovascular unit triple cell co-culture system had better barrier function and higher levels of structural and secretory proteins than the double cell co-culture systems. In comparison, in the model of diabetes-related depression, the neurovascular unit was damaged with decreased barrier function, poor structural integrity and impaired secretory function. Moreover, neuronal apoptosis was markedly increased, and 5-hydroxytryptamine levels were reduced. These results suggest that diabetes-related depression is associated with structural and functional damage to the neurovascular unit. Our findings provide a foundation for further studies on the pathogenesis of diabetes-related depression.
基金supported by the National Natural Science Foundation of China,No.30471836
文摘Non-adherent bone marrow cell-derived mesenchymal stem cells from C57BL/6J mice were sepa- rated and cultured using the "pour-off" method. Non-adherent bone marrow cell-derived mesen- chymal stem ceils developed colony-forming unit-fibroblasts, and could be expanded by supple- mentation with epidermal growth factor. Immunocytochemistry showed that the non-adherent bone marrow cell-derived mesenchymal stem cells exposed to basic fibroblast growth factor/epidermal growth factor/nerve growth factor expressed the neuron specific markers, neurofilament-200 and NeuN, in vitro. Non-adherent bone marrow cell-derived mesenchymal stem cells from 13-galactosidase transgenic mice were also transplanted into focal ischemic brain (right corpus striatum) of C57BL/6J mice. At 8 weeks, cells positive for LacZ and 13-galactosidase staining were observed in the ischemic tissues, and cells co-labeled with both 13-galactosidase and NeuN were seen by double immunohistochemical staining. These findings suggest that the non-adherent bone marrow cell-derived mesenchymal stem cells could differentiate into neuronal-like cells in vitro and in vivo.
文摘Introduction:In the adult human breast,hyperplastic enlarged lobular unit(HELU) and atypical ductal hyperplasia(ADH) are two common abnormalities that frequently coexist with ductal carcinoma in situ(DCIS).For this reason,they have been proposed as the early steps in a biological continuum toward breast cancer.Methods:We investigated in silico the expression of 369 genes experimentally recognized as involved in establishing and maintaining epithelial cell identity and mammary gland remodeling,in HELUs or ADHs with respect to the corresponding patient-matched normal tissue.Results:Despite the common luminal origin,HELUs and ADHs proved to be characterized by distinct gene profiles that overlap for 5 genes only.While HELUs were associated with the overexpression of progesterone receptor(PGR),ADHs were characterized by the overexpression of estrogen receptor 1(ESR1) coupled with the overexpression of some proliferation-associated genes.Conclusions:This unexpected finding contradicts the notion that in differentiated luminal cells the expression of estrogen receptor(ER) is dissociated from cell proliferation and suggests that the establishing of an ER-dependent signaling is able to sustain cell proliferation in an autocrine manner as an early event in tumor initiation.Although clinical evidence indicates that only a fraction of HELUs and ADHs evolve to invasive cancer,present findings warn that exposure to synthetic progestins,frequently administered as hormone-replacement therapy,and estrogens,when abnormally produced by adipose cells and persistently present in the stroma surrounding the mammary gland,may cause these hyperplastic lesions.
文摘AIM To determine if packed red blood cell transfusions contribute to the development of parenteral nutrition associated liver disease. METHODS A retrospective chart review of 49 premature infants on parenteral nutrition for > 30 d who received packed red blood cell(PRBC) transfusions was performed. Parenteral nutrition associated liver disease was primarily defined by direct bilirubin(db) > 2.0 mg/dL. A high transfusion cohort was defined as receiving > 75 mL packed red blood cells(the median value). KaplanMeier plots estimated the median volume of packedred blood cells received in order to develop parenteral nutrition associated liver disease.RESULTS Parenteral nutritional associated liver disease(PNALD) was noted in 21(43%) infants based on db. Among the 27 high transfusion infants, PNALD was present in 17(64%) based on elevated direct bilirubin which was significantly greater than the low transfusion recipients. About 50% of the infants, who were transfused 101-125 mL packed red blood cells, developed PNALD based on elevation of direct bilirubin. All infants who were transfused more than 200 mL of packed red blood cells developed PNALD. Similar results were seen when using elevation of aspartate transaminase or alanine transaminase to define PNALD.CONCLUSION In this retrospective, pilot study there was a statistically significant correlation between the volume of PRBC transfusions received by premature infants and the development of PNALD.