期刊文献+
共找到5篇文章
< 1 >
每页显示 20 50 100
APPLICATION OF CIRCUIT SIMULATION IN HARDWARE DESIGN FOR ELECTRONIC CONTROL HIGH PRESSURE COMMON-RAIL FUEL SYSTEM OF DIESEL ENGINE 被引量:2
1
作者 Tan Wenchun Yu Shitao Yang Lin Zhuo Bin 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2005年第4期613-616,共4页
By means of circuit simulation, hardware of electronic control unit (ECU) of high pressure common-rail electronic control fuel system for diesel engine is designed. According to the system requirements for hardware ... By means of circuit simulation, hardware of electronic control unit (ECU) of high pressure common-rail electronic control fuel system for diesel engine is designed. According to the system requirements for hardware of ECU, signal-processing circuit of variable reluctance (VR) sensor, filter circuit for input signal, high voltage power circuit and driver and protection circuit of solenoid are simulated as emphases. Difficulties of wide scope of VR sensor output signal, efficiency of high voltage power and reliable and swift driver of solenoid are solved. The results of simulation show that the hardware meets the requirement of the fuel system. At the same time, circuit simulation can greatly increase quality of the design, alleviate design labor and shorten design time. 展开更多
关键词 Diesel engine Electronic control unit (ECU) Circuit simulation.
下载PDF
SIMULATION IN THERMAL DESIGN FOR ELECTRONIC CONTROL UNIT OF ELECTRONIC UNIT PUMP 被引量:1
2
作者 XU Quankui ZHU Keqing ZHUO Bin MAO Xiaojian WANG Junxi 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2008年第5期1-7,共7页
The high working junction temperature of power component is the most common reason of its failure. So the thermal design is of vital importance in electronic control unit (ECU) design. By means of circuit simulation... The high working junction temperature of power component is the most common reason of its failure. So the thermal design is of vital importance in electronic control unit (ECU) design. By means of circuit simulation, the thermal design of ECU for electronic unit pump (EUP) fuel system is applied. The power dissipation model of each power component in the ECU is created and simulated. According to the analyses of simulation results, the factors which affect the power dissipation of components are analyzed. Then the ways for reducing the power dissipation of power components are carried out. The power dissipation of power components at different engine state is calculated and analyzed. The maximal power dissipation of each power component in all possible engine state is also carried out based on these simulations. A cooling system is designed based on these studies. The tests show that the maximum total power dissipation of ECU drops from 43.2 W to 33.84 W after these simulations and optimizations. These applications of simulations in thermal design of ECU can greatly increase the quality of the design, save the design cost and shorten design time 展开更多
关键词 Diesel engine Electronic unit pump Electronic control unit Circuit simulation Thermal design
下载PDF
Force Control Compensation Method with Variable Load Stiffness and Damping of the Hydraulic Drive Unit Force Control System 被引量:10
3
作者 KONG Xiangdong BA Kaixian +3 位作者 YU Bin CAO Yuan ZHU Qixin ZHAO Hualong 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2016年第3期454-464,共11页
Each joint of hydraulic drive quadruped robot is driven by the hydraulic drive unit(HDU), and the contacting between the robot foot end and the ground is complex and variable, which increases the difficulty of force... Each joint of hydraulic drive quadruped robot is driven by the hydraulic drive unit(HDU), and the contacting between the robot foot end and the ground is complex and variable, which increases the difficulty of force control inevitably. In the recent years, although many scholars researched some control methods such as disturbance rejection control, parameter self-adaptive control, impedance control and so on, to improve the force control performance of HDU, the robustness of the force control still needs improving. Therefore, how to simulate the complex and variable load characteristics of the environment structure and how to ensure HDU having excellent force control performance with the complex and variable load characteristics are key issues to be solved in this paper. The force control system mathematic model of HDU is established by the mechanism modeling method, and the theoretical models of a novel force control compensation method and a load characteristics simulation method under different environment structures are derived, considering the dynamic characteristics of the load stiffness and the load damping under different environment structures. Then, simulation effects of the variable load stiffness and load damping under the step and sinusoidal load force are analyzed experimentally on the HDU force control performance test platform, which provides the foundation for the force control compensation experiment research. In addition, the optimized PID control parameters are designed to make the HDU have better force control performance with suitable load stiffness and load damping, under which the force control compensation method is introduced, and the robustness of the force control system with several constant load characteristics and the variable load characteristics respectively are comparatively analyzed by experiment. The research results indicate that if the load characteristics are known, the force control compensation method presented in this paper has positive compensation effects on the load characteristics variation, i.e., this method decreases the effects of the load characteristics variation on the force control performance and enhances the force control system robustness with the constant PID parameters, thereby, the online PID parameters tuning control method which is complex needs not be adopted. All the above research provides theoretical and experimental foundation for the force control method of the quadruped robot joints with high robustness. 展开更多
关键词 quadruped robot force control system hydraulic drive unit force control compensation method variable load stiffness and damping simulation
下载PDF
MODEL-BASED DEVELOPMENT OF REAL-TIME SOFTWARE SYSTEM FOR ELECTRONIC UNIT PUMP SYSTEM 被引量:1
4
作者 YU Shitao YANG Shiwei YANG Lin GONG Yuanming ZHUO Bin 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2007年第1期25-30,共6页
A real-time operating system (RTOS), also named OS, is designed based on the hardware platform of MC68376, and is implemented in the electronic control system for unit pump in diesel engine. A parallel and time-base... A real-time operating system (RTOS), also named OS, is designed based on the hardware platform of MC68376, and is implemented in the electronic control system for unit pump in diesel engine. A parallel and time-based task division method is introduced and the multi-task software architecture is built in the software system for electronic unit pump (EUP) system. The V-model software development process is used to control algorithm of each task. The simulation results of the hardware-in-the-loop simulation system (HILSS) and the engine experimental results show that the OS is an efficient real-time kernel, and can meet the real-time demands of EUP system; The built multi-task software system is real-time, determinate and reliable. V-model development is a good development process of control algorithms for EUP system, the control precision of control system can be ensured, and the development cycle and cost are also decreased. 展开更多
关键词 Real-time operating system (RTOS) Multi-task V-model development Hardware-in-the-loop simulation system(HILSS) Electronic unit pump (EUP)
下载PDF
500 MW Unit Simulator for Panshan Thermal Power Plant Passed Acceptance
5
《Electricity》 1996年第4期36-36,共1页
After a thorough demonstration in Panshan Thermal Power Plant, the 500 MW super critical pressure unit simulator developed by the Simulation & Control Institute under the North China University of Electric Power w... After a thorough demonstration in Panshan Thermal Power Plant, the 500 MW super critical pressure unit simulator developed by the Simulation & Control Institute under the North China University of Electric Power was accepted by experts from the North China Electric Power Group Company on 3rd August 1996. 展开更多
关键词 MW Unit Simulator for Panshan Thermal Power Plant Passed Acceptance IP
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部