In dynamic environments,it is important to track changing optimal solutions over time.Univariate marginal distribution algorithm(UMDA) which is a class algorithm of estimation of distribution algorithms attracts mor...In dynamic environments,it is important to track changing optimal solutions over time.Univariate marginal distribution algorithm(UMDA) which is a class algorithm of estimation of distribution algorithms attracts more and more attention in recent years.In this paper a new multi-population and diffusion UMDA(MDUMDA) is proposed for dynamic multimodal problems.The multi-population approach is used to locate multiple local optima which are useful to find the global optimal solution quickly to dynamic multimodal problems.The diffusion model is used to increase the diversity in a guided fashion,which makes the neighbor individuals of previous optimal solutions move gradually from the previous optimal solutions and enlarge the search space.This approach uses both the information of current population and the part history information of the optimal solutions.Finally experimental studies on the moving peaks benchmark are carried out to evaluate the proposed algorithm and compare the performance of MDUMDA and multi-population quantum swarm optimization(MQSO) from the literature.The experimental results show that the MDUMDA is effective for the function with moving optimum and can adapt to the dynamic environments rapidly.展开更多
Most of the human genetic variations are single nucleotide polymorphisms (SNPs), and among them, non-synonymous SNPs, also known as SAPs, attract extensive interest. SAPs can be neural or disease associated. Many stud...Most of the human genetic variations are single nucleotide polymorphisms (SNPs), and among them, non-synonymous SNPs, also known as SAPs, attract extensive interest. SAPs can be neural or disease associated. Many studies have been done to distinguish deleterious SAPs from neutral ones. Since many previous studies were based on both structural and sequence features of the SAP, these methods are not applicable when protein structures are not available. In the current paper, we developed a method based on UMDA and SVM using protein sequence information to predict SAP’s disease association. We extracted a set of features that are independent of protein structure for each SAP. Then a SVM-based machine-learning classifier that used grid search to tune parameters was applied to predict the possible disease associa-tion of SAPs. The SVM method reaches good prediction accuracy. Since the input data of SVM contain irrelevant and noisy features and parameters of SVM also affect the prediction performance, we introduced UMDA-based wrapper approach to search for the ‘best’ solution. The UMDA-based method greatly improved prediction performance. Com-pared with current method, our method achieved better performance.展开更多
基金supported by the National Natural Science Foundation of China (6087309960775013)
文摘In dynamic environments,it is important to track changing optimal solutions over time.Univariate marginal distribution algorithm(UMDA) which is a class algorithm of estimation of distribution algorithms attracts more and more attention in recent years.In this paper a new multi-population and diffusion UMDA(MDUMDA) is proposed for dynamic multimodal problems.The multi-population approach is used to locate multiple local optima which are useful to find the global optimal solution quickly to dynamic multimodal problems.The diffusion model is used to increase the diversity in a guided fashion,which makes the neighbor individuals of previous optimal solutions move gradually from the previous optimal solutions and enlarge the search space.This approach uses both the information of current population and the part history information of the optimal solutions.Finally experimental studies on the moving peaks benchmark are carried out to evaluate the proposed algorithm and compare the performance of MDUMDA and multi-population quantum swarm optimization(MQSO) from the literature.The experimental results show that the MDUMDA is effective for the function with moving optimum and can adapt to the dynamic environments rapidly.
文摘Most of the human genetic variations are single nucleotide polymorphisms (SNPs), and among them, non-synonymous SNPs, also known as SAPs, attract extensive interest. SAPs can be neural or disease associated. Many studies have been done to distinguish deleterious SAPs from neutral ones. Since many previous studies were based on both structural and sequence features of the SAP, these methods are not applicable when protein structures are not available. In the current paper, we developed a method based on UMDA and SVM using protein sequence information to predict SAP’s disease association. We extracted a set of features that are independent of protein structure for each SAP. Then a SVM-based machine-learning classifier that used grid search to tune parameters was applied to predict the possible disease associa-tion of SAPs. The SVM method reaches good prediction accuracy. Since the input data of SVM contain irrelevant and noisy features and parameters of SVM also affect the prediction performance, we introduced UMDA-based wrapper approach to search for the ‘best’ solution. The UMDA-based method greatly improved prediction performance. Com-pared with current method, our method achieved better performance.