Major interactions are known to trigger star formation in galaxies and alter their color.We study the major interactions in filaments and sheets using SDSS data to understand the influence of large-scale environments ...Major interactions are known to trigger star formation in galaxies and alter their color.We study the major interactions in filaments and sheets using SDSS data to understand the influence of large-scale environments on galaxy interactions.We identify the galaxies in filaments and sheets using the local dimension and also find the major pairs residing in these environments.The star formation rate(SFR) and color of the interacting galaxies as a function of pair separation are separately analyzed in filaments and sheets.The analysis is repeated for three volume limited samples covering different magnitude ranges.The major pairs residing in the filaments show a significantly higher SFR and bluer color than those residing in the sheets up to the projected pair separation of~50 kpc.We observe a complete reversal of this behavior for both the SFR and color of the galaxy pairs having a projected separation larger than 50 kpc.Some earlier studies report that the galaxy pairs align with the filament axis.Such alignment inside filaments indicates anisotropic accretion that may cause these differences.We do not observe these trends in the brighter galaxy samples.The pairs in filaments and sheets from the brighter galaxy samples trace relatively denser regions in these environments.The absence of these trends in the brighter samples may be explained by the dominant effect of the local density over the effects of the large-scale environment.展开更多
We examine the possibility of applying the baryonic acoustic oscillation reconstruction method to improve the neutrino massΣm_νconstraint.Thanks to the Gaussianization of the process,we demonstrate that the reconstr...We examine the possibility of applying the baryonic acoustic oscillation reconstruction method to improve the neutrino massΣm_νconstraint.Thanks to the Gaussianization of the process,we demonstrate that the reconstruction algorithm could improve the measurement accuracy by roughly a factor of two.On the other hand,the reconstruction process itself becomes a source of systematic error.While the algorithm is supposed to produce the displacement field from a density distribution,various approximations cause the reconstructed output to deviate on intermediate scales.Nevertheless,it is still possible to benefit from this Gaussianized field,given that we can carefully calibrate the“transfer function”between the reconstruction output and theoretical displacement divergence from simulations.The limitation of this approach is then set by the numerical stability of this transfer function.With an ensemble of simulations,we show that such systematic error could become comparable to statistical uncertainties for a DESI-like survey and be safely neglected for other less ambitious surveys.展开更多
The Jiao Tong University Spectroscopic Telescope(JUST)is a 4.4-meter f/6.0 segmented-mirror telescope dedicated to spectroscopic observations.The JUST primary mirror is composed of 18 hexagonal segments,each with a di...The Jiao Tong University Spectroscopic Telescope(JUST)is a 4.4-meter f/6.0 segmented-mirror telescope dedicated to spectroscopic observations.The JUST primary mirror is composed of 18 hexagonal segments,each with a diameter of 1.1 m.JUST provides two Nasmyth platforms for placing science instruments.One Nasmyth focus fits a field of view of 10′and the other has an extended field of view of 1.2°with correction optics.A tertiary mirror is used to switch between the two Nasmyth foci.JUST will be installed at a site at Lenghu in Qinghai Province,China,and will conduct spectroscopic observations with three types of instruments to explore the dark universe,trace the dynamic universe,and search for exoplanets:(1)a multi-fiber(2000 fibers)medium-resolution spectrometer(R=4000-5000)to spectroscopically map galaxies and large-scale structure;(2)an integral field unit(IFU)array of 500 optical fibers and/or a long-slit spectrograph dedicated to fast follow-ups of transient sources for multi-messenger astronomy;(3)a high-resolution spectrometer(R~100000)designed to identify Jupiter analogs and Earth-like planets,with the capability to characterize the atmospheres of hot exoplanets.展开更多
Gamma-ray bursts(GRBs) are among the brightest objects in the Universe and, hence, can be observed up to a very high redshift. Properly calibrated empirical correlations between intensity and spectral correlations of ...Gamma-ray bursts(GRBs) are among the brightest objects in the Universe and, hence, can be observed up to a very high redshift. Properly calibrated empirical correlations between intensity and spectral correlations of GRBs can be used to estimate the cosmological parameters. However, the possibility of the evolution of GRBs with redshift is a long-standing puzzle. In this work, we used 162 long-duration GRBs to determine whether GRBs below and above a certain redshift have different properties. The GRBs are split into two groups, and we fit the Amati relation for each group separately. Our findings demonstrate that estimations of the Amati parameters for the two groups are substantially dissimilar. We perform simulations to investigate whether the selection effects could cause the difference. Our analysis shows that the differences may be either intrinsic or due to systematic errors in the data, and the selection effects are not their true origin. However, in-depth analysis with a new data set comprised of 119 long GRBs shows that intrinsic scatter may partly be responsible for such effects.展开更多
A significant excess of the stellar mass density at high redshift has been discovered from the early data release of James Webb Space Telescope(JWST),and it may require a high star formation efficiency.However,this wi...A significant excess of the stellar mass density at high redshift has been discovered from the early data release of James Webb Space Telescope(JWST),and it may require a high star formation efficiency.However,this will lead to large number density of ionizing photons in the epoch of reionization(EoR),so that the reionization history will be changed,which can arise tension with the current EoR observations.Warm dark matter(WDM),via the free streaming effect,can suppress the formation of small-scale structure as well as low-mass galaxies.This provides an effective way to decrease the ionizing photons when considering a large star formation efficiency in high-z massive galaxies without altering the cosmic reionization history.On the other hand,the constraints on the properties of WDM can be derived from the JWST observations.In this work,we study WDM as a possible solution to reconcile the JWST stellar mass density of high-z massive galaxies and reionization history.We find that,the JWST high-z comoving cumulative stellar mass density alone has no significant preference for either CDM or WDM model.But using the observational data of other stellar mass density measurements and reionization history,we obtain that the WDM particle mass with mw=0.51_(-0.12)^(+0.22) keV and star formation efficiency parameter f_(*)^(0)> 0.39 in 2σ confidence level can match both the JWST high-z comoving cumulative stellar mass density and the reionization history.展开更多
We develop methods to extract key dark energy information from cosmic distance measurements including the BAO scales and supernova(SN) luminosity distances.Demonstrated using simulated data sets of the complete DESI,L...We develop methods to extract key dark energy information from cosmic distance measurements including the BAO scales and supernova(SN) luminosity distances.Demonstrated using simulated data sets of the complete DESI,LSST and Roman surveys designed for BAO and SN distance measurements,we show that using our method,the dynamical behavior of the energy,pressure,equation of state(with its time derivative) of dark energy and the cosmic deceleration function can all be accurately recovered from high-quality data,which allows for robust diagnostic tests for dark energy models.展开更多
Three mechanisms for an alternative to the Doppler effect as an explanation for the redshift are reviewed. A fourth mechanism is the attenuation of the light as given by the Beer-Lambert law. The average value of the ...Three mechanisms for an alternative to the Doppler effect as an explanation for the redshift are reviewed. A fourth mechanism is the attenuation of the light as given by the Beer-Lambert law. The average value of the Hubble constant is therefore derived by processing the galaxies of the NED-D catalog in which the distances are independent of the redshift. The observed anisotropy of the Hubble constant is reproduced by adopting a rim model, a chord model, and both 2D and 3D Voronoi diagrams.展开更多
We analyze a simple model for tired light in a cosmological environment, a generalized model, and a spectroscopic model. The three models are tested on different compilations for the distance modulus of supernovae. Th...We analyze a simple model for tired light in a cosmological environment, a generalized model, and a spectroscopic model. The three models are tested on different compilations for the distance modulus of supernovae. The tests are negative for the simple tired light and the spectroscopic models, but positive for the generalized tired light model. The percentage error of the distance modulus for the generalized tired light model compared with the distance modulus of standard cosmology is less than one percent over the considered ranges in redshift.展开更多
The improvements in the sensitivity of the gravitational wave(GW) network enable the detection of several large redshift GW sources by third-generation GW detectors. These advancements provide an independent method to...The improvements in the sensitivity of the gravitational wave(GW) network enable the detection of several large redshift GW sources by third-generation GW detectors. These advancements provide an independent method to probe the large-scale structure of the universe by using the clustering of the binary black holes(BBHs). The black hole catalogs are complementary to the galaxy catalogs because of large redshifts of GW events, which may imply that BBHs are a better choice than galaxies to probe the large-scale structure of the universe and cosmic evolution over a large redshift range. To probe the large-scale structure, we used the sky position of the BBHs observed by third-generation GW detectors to calculate the angular correlation function and the bias factor of the population of BBHs. This method is also statistically significant as 5000 BBHs are simulated. Moreover, for the third-generation GW detectors, we found that the bias factor can be recovered to within 33% with an observational time of ten years. This method only depends on the GW source-location posteriors;hence, it can be an independent method to reveal the formation mechanisms and origin of the BBH mergers compared to the electromagnetic method.展开更多
The size distributions of 2D and 3D Voronoi cells and of cells of Vp(2, 3),--2D cut of 3D Voronoi diagram--are explored, with the slngle-parameter (re-scaled) gamma distribution playing a central role in the analy...The size distributions of 2D and 3D Voronoi cells and of cells of Vp(2, 3),--2D cut of 3D Voronoi diagram--are explored, with the slngle-parameter (re-scaled) gamma distribution playing a central role in the analytical fitting. Observational evidence for a cellular universe is briefly reviewed. A simulated Vp(2, 3) map with galaxies lying on the cell boundaries is constructed to compare, as regards general appearance, with the observed CfA map of galaxies and voids, the parameters of the simulation being so chosen as to reproduce the largest observed void size.展开更多
We study the super-large-scale structures in the Sloan Digital Sky Survey by cluster analysis, and examine the geometry and the properties of the member galaxies. Two subsamples are selected from the SDSS, Subsample 1...We study the super-large-scale structures in the Sloan Digital Sky Survey by cluster analysis, and examine the geometry and the properties of the member galaxies. Two subsamples are selected from the SDSS, Subsample 1 at the celestial equator and Subsample 2 further north. In Subsample 1 we discover two compact super-large-scale structures: the Sloan Great Wall and the CfA Great Wall. The Sloan Great Wall, located at a median redshift of z= 0.07804, has a total length of about 433 Mpc and a mean galaxy density of about six times that of the whole sample. Most of its member galaxies are of medium size and brightness. The CfA Great Wall, located at a median redshift of z = 0.03058, has a total length of about 251 Mpc and includes large percentages of faint and small galaxies and relatively fewer early-type galaxies.展开更多
A new way of probing the large-scale structure of the universe is proposed. Space is partitioned into cells the shape of rhombic dodecahedron. The cells are labelled 'filled' or 'empty' according as th...A new way of probing the large-scale structure of the universe is proposed. Space is partitioned into cells the shape of rhombic dodecahedron. The cells are labelled 'filled' or 'empty' according as they contain galaxies or not. The cell size is so chosen as to have nearly equal numbers of filled and empty cells for the given galaxy sample. Two observables on each cell are definable: the number of its like neighbors, n1, and a two-suffixed topological type τ, the suffixes being the numbers of its like and unlike neighbor-groups. The frequency distributions of n1 and T in the observed set of filled (empty) cells are then considered as indicators of the morphology of the set. The method is applied to the CfA catalogue of galaxies as an illustration. Despite its limited size, the data offers evidence 1) that the empty cells are more strongly clustered than the filled cells, and 2) that the filled cells, but not the empty cells, have a tendency to occur in sheets. Further directions of development both in theory and application are indicated.展开更多
We analyze the galaxy pairs in a set of volume limited samples from the Sloan Digital Sky Survey to study the effects of minor interactions on the star formation rate(SFR)and color of galaxies.We carefully design cont...We analyze the galaxy pairs in a set of volume limited samples from the Sloan Digital Sky Survey to study the effects of minor interactions on the star formation rate(SFR)and color of galaxies.We carefully design control samples of isolated galaxies by matching the stellar mass and redshift of the minor pairs.The SFR distributions and color distributions in the minor pairs differ from their controls at>99%significance level.We also simultaneously match the control galaxies in stellar mass,redshift and local density to assess the role of the environment.The null hypothesis can be rejected at>99%confidence level even after matching the environment.Our analysis shows a quenching in the minor pairs where the degree of quenching decreases with the increasing pair separation and plateaus beyond 50 kpc.We also prepare a sample of minor pairs with Hαline information.We calculate the SFR of these galaxies using the Hαline and repeat our analysis.We observe a quenching in the Hαsample too.We find that the majority of the minor pairs are quiescent systems that could be quenched due to minor interactions.Combining data from the Galaxy Zoo and Galaxy Zoo 2,we find that only∼1%galaxies have a dominant bulge,4%–7%galaxies host a bar and 5%–10%of galaxies show active galactic nucleus(AGN)activity in minor pairs.This indicates that the presence of bulge,bar or AGN activity plays an insignificant role in quenching the galaxies in minor pairs.The more massive companion satisfies the criteria for mass quenching in most of the minor pairs.We propose that the stripping and starvation likely caused the quenching in the less massive companion at a later stage of evolution.展开更多
Cross-correlating the data on neutral hydrogen(HⅠ)21 cm intensity mapping with galaxy surveys is an effective method to extract astrophysical and cosmological information.In this work,we investigate the cross-correla...Cross-correlating the data on neutral hydrogen(HⅠ)21 cm intensity mapping with galaxy surveys is an effective method to extract astrophysical and cosmological information.In this work,we investigate the cross-correlation of MeerKAT single-dish mode HⅠintensity mapping and China Space Station Telescope(CSST)spectroscopic galaxy surveys.We simulate a survey area of~300 deg~2 of MeerKAT and CSST surveys at z=0.5 using MultiDark N-body simulation.The PC A algorithm is applied to remove the foregrounds of HⅠintensity mapping,and signal compensation is considered to solve the signal loss problem in HⅠ-galaxy cross power spectrum caused by the foreground removal process.We find that from CSST galaxy auto and MeerKAT-CSST cross power spectra,the constraint accuracy of the parameter productΩ_(HⅠ)b_(HⅠ)r_(HⅠ,g)can reach~1%,which is about one order of magnitude higher than the current results.After performing the full MeerKAT HⅠintensity mapping survey with5000 deg~2 survey area,the accuracy can be enhanced to<0.3%.This implies that the MeerKAT-CSST cross-correlation can be a powerful tool to probe the cosmic HⅠproperty and the evolution of galaxies and the Universe.展开更多
We study the color and star formation rates of paired galaxies in filaments and sheets using the EAGLE simulations.We find that the major pairs with pair separation<50 kpc are bluer and more star-forming in filamen...We study the color and star formation rates of paired galaxies in filaments and sheets using the EAGLE simulations.We find that the major pairs with pair separation<50 kpc are bluer and more star-forming in filamentary environments compared to those hosted in sheet-like environments.This trend reverses beyond a pair separation of~50 kpc.The interacting pairs with larger separations(>50 kpc)in filaments are on average redder and low-star-forming compared to those embedded in sheets.The galaxies in filaments and sheets may have different stellar mass and cold gas mass distributions.Using a KS test,we find that for paired galaxies with pair separation<50 kpc,there are no significant differences in these properties in sheets and filaments.The filaments transport gas toward the cluster of galaxies.Some earlier studies find preferential alignment of galaxy pairs with the filament axis.Such alignment of galaxy pairs may lead to different gas accretion efficiency in galaxies residing in filaments and sheets.We propose that the enhancement of star formation rate at smaller pair separation in filaments is caused by the alignment of galaxy pairs.A recent study with SDSS data reports the same findings.The confirmation of these results by the EAGLE simulations suggests that the hydrodynamical simulations are powerful theoretical tools for studying galaxy formation and evolution in the cosmic web.展开更多
The holographic dark energy models provide an alternative description of dark energy.These models are motivated by the possible application of the holographic principle to the dark energy problem.In this work,we prese...The holographic dark energy models provide an alternative description of dark energy.These models are motivated by the possible application of the holographic principle to the dark energy problem.In this work,we present a theoretical study of the one parameter Li holographic dark energy and the two parameter Barrow holographic dark energy models using configuration entropy of the matter distribution in the universe.The configuration entropy rate exhibits a distinct minimum at a specific scale factor that corresponds to the epoch,beyond which dark energy takes a driving role in the accelerated expansion of the universe.We find that the location of the minimum and magnitude of the entropy rate at the minimum are sensitive to the parameters of the models.We find the best fit relations between these quantities and the parameters of each model.We propose that these relations can be used to constrain the parameters of the holographic dark energy models from future observations such as the SKA.Our study suggests that the signature of a large quantum gravitational effect on the future event horizon can be detected from measurements of the configuration entropy of the matter distribution at multiple redshifts.展开更多
Observations are beginning to constrain the history of the epoch of reionization(EoR).Modeling the reionization process is indispensable to interpret the observations,to infer the properties of ionizing sources,and to...Observations are beginning to constrain the history of the epoch of reionization(EoR).Modeling the reionization process is indispensable to interpret the observations,to infer the properties of ionizing sources,and to probe the various astrophysical processes from the observational data.Here we present an improved version of the seminumerical simulation islandFAST,by incorporating inhomogeneous recombinations and a corresponding inhomogeneous ionizing background,and simulate the reionization process of neutral islands during the late EoR.We find that the islands are more fragmented in models with inhomogeneous recombinations than the case with a homogeneous recombination number.In order to investigate the effects of basic assumptions in the reionization modeling,we compare the results from islandFAST with those from 21cmFAST for the same assumptions on the ionizing photon sources and sinks,to find how the morphology of the ionization field and the reionization history depend on the different treatments of these two models.Such systematic bias should be noted when interpreting the upcoming observations.展开更多
The Lagrange-Jacobi equation is one of the significant tools for the qualitative analysis of the n-body problem. In this paper, we present the modified Lagrange-Jacobi equation by introducing a new formal parameter of...The Lagrange-Jacobi equation is one of the significant tools for the qualitative analysis of the n-body problem. In this paper, we present the modified Lagrange-Jacobi equation by introducing a new formal parameter of n-body problem and propose its application to the dynamical study of clusters of galaxies which are large-scale structures of Universe. We put forward and study a new dynamical problem which is related to the stage of relaxation of observed stationary clusters of galaxies which are considered as a non-equilibrium systems of point masses. We also received the analytical form of the potential energy of such galaxy clusters. One of the applications of this analytical form is the analytical relation between the time of setting up the virial equilibrium in relaxing clusters of galaxies and the cosmological epoch T.展开更多
In the common theory of the Universe, the redshift of the light wavelength from distant stars indicates the speed of the star. In this study, the model of the Universe is the surface volume of the four-dimensional sph...In the common theory of the Universe, the redshift of the light wavelength from distant stars indicates the speed of the star. In this study, the model of the Universe is the surface volume of the four-dimensional sphere, and the shape of the Universe results in the most of the redshift of light wavelength. Therefore, there is no dark energy accelerating the Universe. The surface of the four-dimensional sphere is a volume, and this volume is a good model for the Universe. The surface volume of the four-dimensional sphere has been explained by a model of four-dimensional cube, within which the forming of surface volume can be easily shown. The model of four-dimensional cube containing six side cubes is ingenious for explaining the structure of the four-dimensional Universe, but it is not enough because the four-dimensional cube has not six side cubes, but eight side cubes. Therefore, in this study a better method has been created to construct the four-dimensional cube. Our three-dimensional Universe is the surface of the four-dimensional sphere Universe. The volume of our three-dimensional Universe is finite, and beneath it is the infinite volume four-dimensional Super Universe. Two important basic formulae have been derived: The surface volume of the four-dimensional sphere is π<sup>3</sup>R<sup>3</sup> in which R is the radius of the sphere, and the fourth-power volume of the four-dimensional sphere is 1/4 π<sup>3</sup>R<sup>4</sup>. The volume of the Universe has been calculated π<sup>3</sup>R<sup>3</sup> = 62 × 10<sup>30</sup> ly<sup>3</sup>. Time as the fourth dimension of the space takes effect only near the speed of light, and therefore it has been ignored in this study.展开更多
We present a GPU-accelerated cosmological simulation code,PhotoNs-GPU,based on an algorithm of Particle Mesh Fast Multipole Method(PM-FMM),and focus on the GPU utilization and optimization.A proper interpolated method...We present a GPU-accelerated cosmological simulation code,PhotoNs-GPU,based on an algorithm of Particle Mesh Fast Multipole Method(PM-FMM),and focus on the GPU utilization and optimization.A proper interpolated method for truncated gravity is introduced to speed up the special functions in kernels.We verify the GPU code in mixed precision and different levels of the interpolated method on GPU.A run with single precision is roughly two times faster than double precision for current practical cosmological simulations.But it could induce an unbiased small noise in power spectrum.Compared with the CPU version of PhotoNs and Gadget-2,the efficiency of the new code is significantly improved.Activated all the optimizations on the memory access,kernel functions and concurrency management,the peak performance of our test runs achieves 48%of the theoretical speed and the average performance approaches to~35%on GPU.展开更多
基金financial support from the SERB,DST,Government of India through the project CRG/2019/001110IUCAA,Pune for providing support through an associateship program+1 种基金IISER Tirupati for support through a postdoctoral fellowshipFunding for the SDSS and SDSS-Ⅱhas been provided by the Alfred P.Sloan Foundation,the U.S.Department of Energy,the National Aeronautics and Space Administration,the Japanese Monbukagakusho,the Max Planck Society,and the Higher Education Funding Council for England。
文摘Major interactions are known to trigger star formation in galaxies and alter their color.We study the major interactions in filaments and sheets using SDSS data to understand the influence of large-scale environments on galaxy interactions.We identify the galaxies in filaments and sheets using the local dimension and also find the major pairs residing in these environments.The star formation rate(SFR) and color of the interacting galaxies as a function of pair separation are separately analyzed in filaments and sheets.The analysis is repeated for three volume limited samples covering different magnitude ranges.The major pairs residing in the filaments show a significantly higher SFR and bluer color than those residing in the sheets up to the projected pair separation of~50 kpc.We observe a complete reversal of this behavior for both the SFR and color of the galaxy pairs having a projected separation larger than 50 kpc.Some earlier studies report that the galaxy pairs align with the filament axis.Such alignment inside filaments indicates anisotropic accretion that may cause these differences.We do not observe these trends in the brighter galaxy samples.The pairs in filaments and sheets from the brighter galaxy samples trace relatively denser regions in these environments.The absence of these trends in the brighter samples may be explained by the dominant effect of the local density over the effects of the large-scale environment.
基金the support from the science research grants from the China Manned Space Project with NO.CMS-CSST-2021-B01supported by the World Premier International Research Center Initiative(WPI),MEXT,Japan+12 种基金the Ontario Research Fund:Research Excellence Program(ORF-RE)Natural Sciences and Engineering Research Council of Canada(NSERC)[funding reference number RGPIN-2019-067,CRD 523638-201,555585-20]Canadian Institute for Advanced Research(CIFAR)Canadian Foundation for Innovation(CFI)the National Natural Science Foundation of China(NSFC,Grant No.11929301)Simons FoundationThoth Technology IncAlexander von Humboldt Foundationthe Niagara supercomputers at the SciNet HPC Consortiumthe Canada Foundation for Innovationthe Government of OntarioOntario Research Fund—Research Excellencethe University of Toronto。
文摘We examine the possibility of applying the baryonic acoustic oscillation reconstruction method to improve the neutrino massΣm_νconstraint.Thanks to the Gaussianization of the process,we demonstrate that the reconstruction algorithm could improve the measurement accuracy by roughly a factor of two.On the other hand,the reconstruction process itself becomes a source of systematic error.While the algorithm is supposed to produce the displacement field from a density distribution,various approximations cause the reconstructed output to deviate on intermediate scales.Nevertheless,it is still possible to benefit from this Gaussianized field,given that we can carefully calibrate the“transfer function”between the reconstruction output and theoretical displacement divergence from simulations.The limitation of this approach is then set by the numerical stability of this transfer function.With an ensemble of simulations,we show that such systematic error could become comparable to statistical uncertainties for a DESI-like survey and be safely neglected for other less ambitious surveys.
基金This work is supported by“the Fundamental Research Funds for the Central Universities”,111 project No.B20019Shanghai Natural Science Foundation,grant No.19ZR1466800.
文摘The Jiao Tong University Spectroscopic Telescope(JUST)is a 4.4-meter f/6.0 segmented-mirror telescope dedicated to spectroscopic observations.The JUST primary mirror is composed of 18 hexagonal segments,each with a diameter of 1.1 m.JUST provides two Nasmyth platforms for placing science instruments.One Nasmyth focus fits a field of view of 10′and the other has an extended field of view of 1.2°with correction optics.A tertiary mirror is used to switch between the two Nasmyth foci.JUST will be installed at a site at Lenghu in Qinghai Province,China,and will conduct spectroscopic observations with three types of instruments to explore the dark universe,trace the dynamic universe,and search for exoplanets:(1)a multi-fiber(2000 fibers)medium-resolution spectrometer(R=4000-5000)to spectroscopically map galaxies and large-scale structure;(2)an integral field unit(IFU)array of 500 optical fibers and/or a long-slit spectrograph dedicated to fast follow-ups of transient sources for multi-messenger astronomy;(3)a high-resolution spectrometer(R~100000)designed to identify Jupiter analogs and Earth-like planets,with the capability to characterize the atmospheres of hot exoplanets.
基金M.S.thanks DMRC for supportD.S.thanks the compeers of GD Goenka University for continuing assistance.
文摘Gamma-ray bursts(GRBs) are among the brightest objects in the Universe and, hence, can be observed up to a very high redshift. Properly calibrated empirical correlations between intensity and spectral correlations of GRBs can be used to estimate the cosmological parameters. However, the possibility of the evolution of GRBs with redshift is a long-standing puzzle. In this work, we used 162 long-duration GRBs to determine whether GRBs below and above a certain redshift have different properties. The GRBs are split into two groups, and we fit the Amati relation for each group separately. Our findings demonstrate that estimations of the Amati parameters for the two groups are substantially dissimilar. We perform simulations to investigate whether the selection effects could cause the difference. Our analysis shows that the differences may be either intrinsic or due to systematic errors in the data, and the selection effects are not their true origin. However, in-depth analysis with a new data set comprised of 119 long GRBs shows that intrinsic scatter may partly be responsible for such effects.
基金support of the National Key R&D Program of China No. 2022YFF0503404, 2020SKA0110402,MOST-2018YFE0120800,NSFC-11822305, NSFC-11773031,NSFC-11633004, NSFC-11473044, NSFC-11973047the CAS Project for Young Scientists in Basic Research (No. YSBR-092)+1 种基金the Chinese Academy of Sciences grants QYZDJ-SSWSLH017, XDB 23040100, and XDA15020200supported by the science research grants from the China Manned Space Project with NO.CMS-CSST-2021-B01 and CMS-CSST-2021-A01。
文摘A significant excess of the stellar mass density at high redshift has been discovered from the early data release of James Webb Space Telescope(JWST),and it may require a high star formation efficiency.However,this will lead to large number density of ionizing photons in the epoch of reionization(EoR),so that the reionization history will be changed,which can arise tension with the current EoR observations.Warm dark matter(WDM),via the free streaming effect,can suppress the formation of small-scale structure as well as low-mass galaxies.This provides an effective way to decrease the ionizing photons when considering a large star formation efficiency in high-z massive galaxies without altering the cosmic reionization history.On the other hand,the constraints on the properties of WDM can be derived from the JWST observations.In this work,we study WDM as a possible solution to reconcile the JWST stellar mass density of high-z massive galaxies and reionization history.We find that,the JWST high-z comoving cumulative stellar mass density alone has no significant preference for either CDM or WDM model.But using the observational data of other stellar mass density measurements and reionization history,we obtain that the WDM particle mass with mw=0.51_(-0.12)^(+0.22) keV and star formation efficiency parameter f_(*)^(0)> 0.39 in 2σ confidence level can match both the JWST high-z comoving cumulative stellar mass density and the reionization history.
基金supported by the National Key R&D Program of China(2023YFA1607800,2023YFA1607803)the National Natural Science Foundation of China (NSFC,Grant Nos.11925303 and11890691)+3 种基金supported by the National Natural Science Foundation of China (NSFC,Grant No.12203062)by a CAS Project for Young Scientists in Basic Research (No.YSBR-092)supported by science research grants from the China Manned Space Project with No.CMS-CSST-2021-B01supported by the New Cornerstone Science Foundation through the XPLORER prize。
文摘We develop methods to extract key dark energy information from cosmic distance measurements including the BAO scales and supernova(SN) luminosity distances.Demonstrated using simulated data sets of the complete DESI,LSST and Roman surveys designed for BAO and SN distance measurements,we show that using our method,the dynamical behavior of the energy,pressure,equation of state(with its time derivative) of dark energy and the cosmic deceleration function can all be accurately recovered from high-quality data,which allows for robust diagnostic tests for dark energy models.
文摘Three mechanisms for an alternative to the Doppler effect as an explanation for the redshift are reviewed. A fourth mechanism is the attenuation of the light as given by the Beer-Lambert law. The average value of the Hubble constant is therefore derived by processing the galaxies of the NED-D catalog in which the distances are independent of the redshift. The observed anisotropy of the Hubble constant is reproduced by adopting a rim model, a chord model, and both 2D and 3D Voronoi diagrams.
文摘We analyze a simple model for tired light in a cosmological environment, a generalized model, and a spectroscopic model. The three models are tested on different compilations for the distance modulus of supernovae. The tests are negative for the simple tired light and the spectroscopic models, but positive for the generalized tired light model. The percentage error of the distance modulus for the generalized tired light model compared with the distance modulus of standard cosmology is less than one percent over the considered ranges in redshift.
基金supported by the National Natural Science Foundation of China (grant Nos. 11922303, 119201003 and 12021003)supported by Hubei province Natural Science Fund for the Distinguished Young Scholars (No.2019CFA052)supported by CAS Project for Young Scientists in Basic Research YSBR-006。
文摘The improvements in the sensitivity of the gravitational wave(GW) network enable the detection of several large redshift GW sources by third-generation GW detectors. These advancements provide an independent method to probe the large-scale structure of the universe by using the clustering of the binary black holes(BBHs). The black hole catalogs are complementary to the galaxy catalogs because of large redshifts of GW events, which may imply that BBHs are a better choice than galaxies to probe the large-scale structure of the universe and cosmic evolution over a large redshift range. To probe the large-scale structure, we used the sky position of the BBHs observed by third-generation GW detectors to calculate the angular correlation function and the bias factor of the population of BBHs. This method is also statistically significant as 5000 BBHs are simulated. Moreover, for the third-generation GW detectors, we found that the bias factor can be recovered to within 33% with an observational time of ten years. This method only depends on the GW source-location posteriors;hence, it can be an independent method to reveal the formation mechanisms and origin of the BBH mergers compared to the electromagnetic method.
文摘The size distributions of 2D and 3D Voronoi cells and of cells of Vp(2, 3),--2D cut of 3D Voronoi diagram--are explored, with the slngle-parameter (re-scaled) gamma distribution playing a central role in the analytical fitting. Observational evidence for a cellular universe is briefly reviewed. A simulated Vp(2, 3) map with galaxies lying on the cell boundaries is constructed to compare, as regards general appearance, with the observed CfA map of galaxies and voids, the parameters of the simulation being so chosen as to reproduce the largest observed void size.
基金Supported by the National Natural Science Foundation of China
文摘We study the super-large-scale structures in the Sloan Digital Sky Survey by cluster analysis, and examine the geometry and the properties of the member galaxies. Two subsamples are selected from the SDSS, Subsample 1 at the celestial equator and Subsample 2 further north. In Subsample 1 we discover two compact super-large-scale structures: the Sloan Great Wall and the CfA Great Wall. The Sloan Great Wall, located at a median redshift of z= 0.07804, has a total length of about 433 Mpc and a mean galaxy density of about six times that of the whole sample. Most of its member galaxies are of medium size and brightness. The CfA Great Wall, located at a median redshift of z = 0.03058, has a total length of about 251 Mpc and includes large percentages of faint and small galaxies and relatively fewer early-type galaxies.
文摘A new way of probing the large-scale structure of the universe is proposed. Space is partitioned into cells the shape of rhombic dodecahedron. The cells are labelled 'filled' or 'empty' according as they contain galaxies or not. The cell size is so chosen as to have nearly equal numbers of filled and empty cells for the given galaxy sample. Two observables on each cell are definable: the number of its like neighbors, n1, and a two-suffixed topological type τ, the suffixes being the numbers of its like and unlike neighbor-groups. The frequency distributions of n1 and T in the observed set of filled (empty) cells are then considered as indicators of the morphology of the set. The method is applied to the CfA catalogue of galaxies as an illustration. Despite its limited size, the data offers evidence 1) that the empty cells are more strongly clustered than the filled cells, and 2) that the filled cells, but not the empty cells, have a tendency to occur in sheets. Further directions of development both in theory and application are indicated.
基金financial support from the SERB,DST,Government of India through the project CRG/2019/001110IUCAA,Pune for providing support through an associateship program+8 种基金IISER Tirupati for support through a postdoctoral fellowshipFunding for the SDSS and SDSS-II has been provided by the Alfred P.Sloan Foundationthe Participating Institutionsthe National Science Foundationthe U.S.Department of Energythe National Aeronautics and Space Administrationthe Japanese Monbukagakushothe Max Planck Societythe Higher Education Funding Council for England.
文摘We analyze the galaxy pairs in a set of volume limited samples from the Sloan Digital Sky Survey to study the effects of minor interactions on the star formation rate(SFR)and color of galaxies.We carefully design control samples of isolated galaxies by matching the stellar mass and redshift of the minor pairs.The SFR distributions and color distributions in the minor pairs differ from their controls at>99%significance level.We also simultaneously match the control galaxies in stellar mass,redshift and local density to assess the role of the environment.The null hypothesis can be rejected at>99%confidence level even after matching the environment.Our analysis shows a quenching in the minor pairs where the degree of quenching decreases with the increasing pair separation and plateaus beyond 50 kpc.We also prepare a sample of minor pairs with Hαline information.We calculate the SFR of these galaxies using the Hαline and repeat our analysis.We observe a quenching in the Hαsample too.We find that the majority of the minor pairs are quiescent systems that could be quenched due to minor interactions.Combining data from the Galaxy Zoo and Galaxy Zoo 2,we find that only∼1%galaxies have a dominant bulge,4%–7%galaxies host a bar and 5%–10%of galaxies show active galactic nucleus(AGN)activity in minor pairs.This indicates that the presence of bulge,bar or AGN activity plays an insignificant role in quenching the galaxies in minor pairs.The more massive companion satisfies the criteria for mass quenching in most of the minor pairs.We propose that the stripping and starvation likely caused the quenching in the less massive companion at a later stage of evolution.
基金the support of 2020SKA0110402,MOST-2018YFE0120800National Key R&D Program of China No.2022YFF0503404+5 种基金the National Natural Science Foundation of China(NSFC,Grant Nos.11822305,11773031 and 11633004)support of the National Natural Science Foundation of China(NSFC,Grant Nos.11473044 and 11973047)the Chinese Academy of Sciences grants QYZDJ-SSW-SLH017,XDB23040100,XDA15020200supported by the National Research Foundation of South Africa under Grant Nos.150580,120385 and 120378NIThe CS program“New Insights into Astrophysics and Cosmology with Theoretical Models confronting Observational Data”supported by the science research grants from the China Manned Space Project with NO.CMS-CSST-2021-B01 and CMS-CSST-2021-A01。
文摘Cross-correlating the data on neutral hydrogen(HⅠ)21 cm intensity mapping with galaxy surveys is an effective method to extract astrophysical and cosmological information.In this work,we investigate the cross-correlation of MeerKAT single-dish mode HⅠintensity mapping and China Space Station Telescope(CSST)spectroscopic galaxy surveys.We simulate a survey area of~300 deg~2 of MeerKAT and CSST surveys at z=0.5 using MultiDark N-body simulation.The PC A algorithm is applied to remove the foregrounds of HⅠintensity mapping,and signal compensation is considered to solve the signal loss problem in HⅠ-galaxy cross power spectrum caused by the foreground removal process.We find that from CSST galaxy auto and MeerKAT-CSST cross power spectra,the constraint accuracy of the parameter productΩ_(HⅠ)b_(HⅠ)r_(HⅠ,g)can reach~1%,which is about one order of magnitude higher than the current results.After performing the full MeerKAT HⅠintensity mapping survey with5000 deg~2 survey area,the accuracy can be enhanced to<0.3%.This implies that the MeerKAT-CSST cross-correlation can be a powerful tool to probe the cosmic HⅠproperty and the evolution of galaxies and the Universe.
基金financial support from the SERB,DST,Government of India through the project CRG/2019/001110support from IUCAA,Pune through the associateship programDST,Government of India for support through a National Post Doctoral Fellowship(N-PDF)。
文摘We study the color and star formation rates of paired galaxies in filaments and sheets using the EAGLE simulations.We find that the major pairs with pair separation<50 kpc are bluer and more star-forming in filamentary environments compared to those hosted in sheet-like environments.This trend reverses beyond a pair separation of~50 kpc.The interacting pairs with larger separations(>50 kpc)in filaments are on average redder and low-star-forming compared to those embedded in sheets.The galaxies in filaments and sheets may have different stellar mass and cold gas mass distributions.Using a KS test,we find that for paired galaxies with pair separation<50 kpc,there are no significant differences in these properties in sheets and filaments.The filaments transport gas toward the cluster of galaxies.Some earlier studies find preferential alignment of galaxy pairs with the filament axis.Such alignment of galaxy pairs may lead to different gas accretion efficiency in galaxies residing in filaments and sheets.We propose that the enhancement of star formation rate at smaller pair separation in filaments is caused by the alignment of galaxy pairs.A recent study with SDSS data reports the same findings.The confirmation of these results by the EAGLE simulations suggests that the hydrodynamical simulations are powerful theoretical tools for studying galaxy formation and evolution in the cosmic web.
基金financial support from the SERB,DST,Government of India through the project CRG/2019/001110IUCAA,Pune for providing support through associateship program。
文摘The holographic dark energy models provide an alternative description of dark energy.These models are motivated by the possible application of the holographic principle to the dark energy problem.In this work,we present a theoretical study of the one parameter Li holographic dark energy and the two parameter Barrow holographic dark energy models using configuration entropy of the matter distribution in the universe.The configuration entropy rate exhibits a distinct minimum at a specific scale factor that corresponds to the epoch,beyond which dark energy takes a driving role in the accelerated expansion of the universe.We find that the location of the minimum and magnitude of the entropy rate at the minimum are sensitive to the parameters of the models.We find the best fit relations between these quantities and the parameters of each model.We propose that these relations can be used to constrain the parameters of the holographic dark energy models from future observations such as the SKA.Our study suggests that the signature of a large quantum gravitational effect on the future event horizon can be detected from measurements of the configuration entropy of the matter distribution at multiple redshifts.
基金supported by the National Key R&D Program of China No.2018YFE0120800the National Natural Science Foundation of China grant No.11973047+1 种基金the National Key R&D Program of China No.2022YFF0504300the National SKA Program of China Nos.2020SKA0110401,and 2020SKA0110402。
文摘Observations are beginning to constrain the history of the epoch of reionization(EoR).Modeling the reionization process is indispensable to interpret the observations,to infer the properties of ionizing sources,and to probe the various astrophysical processes from the observational data.Here we present an improved version of the seminumerical simulation islandFAST,by incorporating inhomogeneous recombinations and a corresponding inhomogeneous ionizing background,and simulate the reionization process of neutral islands during the late EoR.We find that the islands are more fragmented in models with inhomogeneous recombinations than the case with a homogeneous recombination number.In order to investigate the effects of basic assumptions in the reionization modeling,we compare the results from islandFAST with those from 21cmFAST for the same assumptions on the ionizing photon sources and sinks,to find how the morphology of the ionization field and the reionization history depend on the different treatments of these two models.Such systematic bias should be noted when interpreting the upcoming observations.
文摘The Lagrange-Jacobi equation is one of the significant tools for the qualitative analysis of the n-body problem. In this paper, we present the modified Lagrange-Jacobi equation by introducing a new formal parameter of n-body problem and propose its application to the dynamical study of clusters of galaxies which are large-scale structures of Universe. We put forward and study a new dynamical problem which is related to the stage of relaxation of observed stationary clusters of galaxies which are considered as a non-equilibrium systems of point masses. We also received the analytical form of the potential energy of such galaxy clusters. One of the applications of this analytical form is the analytical relation between the time of setting up the virial equilibrium in relaxing clusters of galaxies and the cosmological epoch T.
文摘In the common theory of the Universe, the redshift of the light wavelength from distant stars indicates the speed of the star. In this study, the model of the Universe is the surface volume of the four-dimensional sphere, and the shape of the Universe results in the most of the redshift of light wavelength. Therefore, there is no dark energy accelerating the Universe. The surface of the four-dimensional sphere is a volume, and this volume is a good model for the Universe. The surface volume of the four-dimensional sphere has been explained by a model of four-dimensional cube, within which the forming of surface volume can be easily shown. The model of four-dimensional cube containing six side cubes is ingenious for explaining the structure of the four-dimensional Universe, but it is not enough because the four-dimensional cube has not six side cubes, but eight side cubes. Therefore, in this study a better method has been created to construct the four-dimensional cube. Our three-dimensional Universe is the surface of the four-dimensional sphere Universe. The volume of our three-dimensional Universe is finite, and beneath it is the infinite volume four-dimensional Super Universe. Two important basic formulae have been derived: The surface volume of the four-dimensional sphere is π<sup>3</sup>R<sup>3</sup> in which R is the radius of the sphere, and the fourth-power volume of the four-dimensional sphere is 1/4 π<sup>3</sup>R<sup>4</sup>. The volume of the Universe has been calculated π<sup>3</sup>R<sup>3</sup> = 62 × 10<sup>30</sup> ly<sup>3</sup>. Time as the fourth dimension of the space takes effect only near the speed of light, and therefore it has been ignored in this study.
基金the National SKA Program of China(Grant No.2020SKA0110401)the National Natural Science Foundation of China(Grant No.12033008)K.C.Wong Education Foundation。
文摘We present a GPU-accelerated cosmological simulation code,PhotoNs-GPU,based on an algorithm of Particle Mesh Fast Multipole Method(PM-FMM),and focus on the GPU utilization and optimization.A proper interpolated method for truncated gravity is introduced to speed up the special functions in kernels.We verify the GPU code in mixed precision and different levels of the interpolated method on GPU.A run with single precision is roughly two times faster than double precision for current practical cosmological simulations.But it could induce an unbiased small noise in power spectrum.Compared with the CPU version of PhotoNs and Gadget-2,the efficiency of the new code is significantly improved.Activated all the optimizations on the memory access,kernel functions and concurrency management,the peak performance of our test runs achieves 48%of the theoretical speed and the average performance approaches to~35%on GPU.