The development of fissures in expansive soils has a great effect on the stability of slope. Of the three phases of soils,the gas phase and solid phase are relatively insulated,so the average resistivity of soils can ...The development of fissures in expansive soils has a great effect on the stability of slope. Of the three phases of soils,the gas phase and solid phase are relatively insulated,so the average resistivity of soils can be calculated from the resistivity of the liquid phase. On this basis,the two-part model of resistivity changing with the water saturation of the expansive soil can be deduced. A 2-D resistance grid model is established based on simulating the resistance of ver-tically developed fissures. Variation in measured resistance of vertically developed fissures at different positions can be calculated from this model. Fissure development can be inversely determined from the variation in the measured resis-tance. Finally,the model is verified by an indoor resistivity test for remolded soil samples,indicating that the test result agrees well with that of the model established.展开更多
Focused on the sensitivity to climate change and the special mechanical characteristics of undisturbed expansive soil, an elasto-plastic damage constitutive model was proposed based on the mechanics of unsaturated soi...Focused on the sensitivity to climate change and the special mechanical characteristics of undisturbed expansive soil, an elasto-plastic damage constitutive model was proposed based on the mechanics of unsaturated soil and the mechanics of damage. Undisturbed expansive soil was considered as a compound of non-damaged part and damaged part. The behavior of the non-damaged part was described using non-linear constitutive model of unsaturated soil. The property of the damaged part was described using a damage evolution equation and two yield surfaces, i.e., loading yield (LY) and shear yield (SY). Furthermore, a consolidation model for unsaturated undisturbed expansive soil was established and a FEM program named UESEPDC was designed. Numerical analysis on solid-liquid-gas tri-phases and multi-field couple problem was conducted for four stages and fields of stress, displacement, pore water pressure, pore air pressure, water content, suction, and the damage region as well as plastic region in an expansive soil slope were obtained.展开更多
Unsaturated expansive soil is widely distributed in China and has complex engineering properties.This paper proposes the unified hydraulic effect shear strength theory of unsaturated expansive soil based on the effect...Unsaturated expansive soil is widely distributed in China and has complex engineering properties.This paper proposes the unified hydraulic effect shear strength theory of unsaturated expansive soil based on the effective stress principle,swelling force principle,and soil–water characteristics.Considering the viscoelasticity and structural damage of unsaturated expansive soil during loading,a fractional hardening–damage model of unsaturated expansive soil was established.The model parameters were established on the basis of the proposed calculation method of shear strength and the triaxial shear experiment on unsaturated expansive soil.The proposed model was verified by the experimental data and a traditional damage model.The proposed model can satisfactorily describe the entire process of the strain-hardening law of unsaturated expansive soil.Finally,by investigating the damage variables of the proposed model,it was found that:(a)when the values of confining pressure and matric suction are close,the coupling of confining pressure and matric suction contributes more to the shear strength;(b)there is a damage threshold for unsaturated expansive soil,and is mainly reflected by strength criterion of infinitesimal body;(c)the strain hardening law of unsaturated expansive soil is mainly reflected by fractional derivative operator.展开更多
Limited studies dealt with the expansive unsaturated soils in the case of large-scale model close to the field conditions and therefore, there is much more room for improvement. In this study, expansive (bentonite–s...Limited studies dealt with the expansive unsaturated soils in the case of large-scale model close to the field conditions and therefore, there is much more room for improvement. In this study, expansive (bentonite–sand (B–S) mixture) and non-expansive (kaolin) soils were tested in different water contents and dry unit weights chosen from the compaction curve to examine the effect of water content change on soil properties (swelling pressure, expansion indices, shear strength (soil cohesion) and soil suction) for the small soil samples. Large-scale model was also used to show the effect of water content change on different relations (swelling and suction with elapsed time). The study reveals that the initial soil conditions (water content and dry unit weight) affect the soil cohesion, suction and swelling, where all these parameters slightly decrease with the increase in soil water content especially on the wet side of optimum water content. The settlement of each soil at failure increases with the increase in soil degrees of saturation since the matric suction reduces the soil ability to deform. The settlement observed in B–S mixture is higher than that in kaolin due to the effect of higher swelling observed in B–S mixture and the huge amount of water absorbed which transformed the soil to highly compressible soil. The matric suction seems to decrease with elapsed time from top to bottom of tensiometers due to the effect of water flowing from top of the specimen. The tensiometer reading at first of the saturation process is lower than that at later period of saturation (for soil sample B–S3, the tensiometer #1 took 3 d to drop from 93 kPa to 80 kPa at early stage, while the same tensiometer took 2 d to drop from 60 kPa to 20 kPa).展开更多
基金Project 50579017 supported by the National Natural Science Foundation of China
文摘The development of fissures in expansive soils has a great effect on the stability of slope. Of the three phases of soils,the gas phase and solid phase are relatively insulated,so the average resistivity of soils can be calculated from the resistivity of the liquid phase. On this basis,the two-part model of resistivity changing with the water saturation of the expansive soil can be deduced. A 2-D resistance grid model is established based on simulating the resistance of ver-tically developed fissures. Variation in measured resistance of vertically developed fissures at different positions can be calculated from this model. Fissure development can be inversely determined from the variation in the measured resis-tance. Finally,the model is verified by an indoor resistivity test for remolded soil samples,indicating that the test result agrees well with that of the model established.
基金Project supported by the National Natural Science Foundation of China (No.10372115)
文摘Focused on the sensitivity to climate change and the special mechanical characteristics of undisturbed expansive soil, an elasto-plastic damage constitutive model was proposed based on the mechanics of unsaturated soil and the mechanics of damage. Undisturbed expansive soil was considered as a compound of non-damaged part and damaged part. The behavior of the non-damaged part was described using non-linear constitutive model of unsaturated soil. The property of the damaged part was described using a damage evolution equation and two yield surfaces, i.e., loading yield (LY) and shear yield (SY). Furthermore, a consolidation model for unsaturated undisturbed expansive soil was established and a FEM program named UESEPDC was designed. Numerical analysis on solid-liquid-gas tri-phases and multi-field couple problem was conducted for four stages and fields of stress, displacement, pore water pressure, pore air pressure, water content, suction, and the damage region as well as plastic region in an expansive soil slope were obtained.
基金financially supported by Sichuan Huaxi Group Co.,ltd.(No.HXKX2019/015,No.HXKX2019/019,No.HXKX2018/030)the Open Fund of Sichuan Provincial Engineering Research Center of City Solid Waste Energy and Building Materials Conversion and Utilization Technology(No.GF2022ZC009)the Open Fund of Sichuan Engineering Research Center for Mechanical Properties and Engineering Technology of Unsaturated Soils(No.SC-FBHT2022-04)。
文摘Unsaturated expansive soil is widely distributed in China and has complex engineering properties.This paper proposes the unified hydraulic effect shear strength theory of unsaturated expansive soil based on the effective stress principle,swelling force principle,and soil–water characteristics.Considering the viscoelasticity and structural damage of unsaturated expansive soil during loading,a fractional hardening–damage model of unsaturated expansive soil was established.The model parameters were established on the basis of the proposed calculation method of shear strength and the triaxial shear experiment on unsaturated expansive soil.The proposed model was verified by the experimental data and a traditional damage model.The proposed model can satisfactorily describe the entire process of the strain-hardening law of unsaturated expansive soil.Finally,by investigating the damage variables of the proposed model,it was found that:(a)when the values of confining pressure and matric suction are close,the coupling of confining pressure and matric suction contributes more to the shear strength;(b)there is a damage threshold for unsaturated expansive soil,and is mainly reflected by strength criterion of infinitesimal body;(c)the strain hardening law of unsaturated expansive soil is mainly reflected by fractional derivative operator.
文摘Limited studies dealt with the expansive unsaturated soils in the case of large-scale model close to the field conditions and therefore, there is much more room for improvement. In this study, expansive (bentonite–sand (B–S) mixture) and non-expansive (kaolin) soils were tested in different water contents and dry unit weights chosen from the compaction curve to examine the effect of water content change on soil properties (swelling pressure, expansion indices, shear strength (soil cohesion) and soil suction) for the small soil samples. Large-scale model was also used to show the effect of water content change on different relations (swelling and suction with elapsed time). The study reveals that the initial soil conditions (water content and dry unit weight) affect the soil cohesion, suction and swelling, where all these parameters slightly decrease with the increase in soil water content especially on the wet side of optimum water content. The settlement of each soil at failure increases with the increase in soil degrees of saturation since the matric suction reduces the soil ability to deform. The settlement observed in B–S mixture is higher than that in kaolin due to the effect of higher swelling observed in B–S mixture and the huge amount of water absorbed which transformed the soil to highly compressible soil. The matric suction seems to decrease with elapsed time from top to bottom of tensiometers due to the effect of water flowing from top of the specimen. The tensiometer reading at first of the saturation process is lower than that at later period of saturation (for soil sample B–S3, the tensiometer #1 took 3 d to drop from 93 kPa to 80 kPa at early stage, while the same tensiometer took 2 d to drop from 60 kPa to 20 kPa).