A dynamic programming-sequential quadratic programming(DP-SQP)combined algorithm is proposed to address the problem that the traditional continuous control method has high computational complexity and is easy to fall ...A dynamic programming-sequential quadratic programming(DP-SQP)combined algorithm is proposed to address the problem that the traditional continuous control method has high computational complexity and is easy to fall into local optimal solution.To solve the globally optimal control law sequence,we use the dynamic programming algorithm to discretize the separation control decision-making process into a series of sub-stages based on the time characteristics of the separation allocation model,and recursion from the end stage to the initial stage.The sequential quadratic programming algorithm is then used to solve the optimal return function and the optimal control law for each sub-stage.Comparative simulations of the combined algorithm and the traditional algorithm are designed to validate the superiority of the combined algorithm.Aircraft-following and cross-conflict simulation examples are created to demonstrate the combined algorithm’s adaptability to various conflict scenarios.The simulation results demonstrate the separation deploy strategy’s effectiveness,efficiency,and adaptability.展开更多
In hermaphroditic plants, female reproductive success often varies among different positions within an inflorescence. However, few studies have evaluated the relative importance of underlying causes such as pollen lim...In hermaphroditic plants, female reproductive success often varies among different positions within an inflorescence. However, few studies have evaluated the relative importance of underlying causes such as pollen limitation, resource limitation or architectural effect, and few have compared male allocation. During a 2-year investigation, we found that female reproductive success of an acropetally flowering species, Corydalis remota Fisch. ex Maxim. var. lineariloba Maxim. was significantly lower in the upper late developing flowers when compared with the lower early flowers. Supplementation with outcross pollen did not improve female reproductive success of the upper flowers, while removal of the lower developing fruits significantly increased female reproductive success of the upper flowers in both years, evidencing resource limitation of the upper flowers. Female production in upper flowers was greatly improved by simultaneous pollen supplementation of the upper flowers and removal of the lower fruits, suggesting that, when resources are abundant, pollen may limit the female reproductive success of the upper flowers. The less seed mass in the upper flowers didn't increase in all treatments due to architecture. In the upper flowers, ovule production was significantly lower and the pollen : ovule ratio was significantly higher. These results suggest that male-biased sex allocation in the upper flowers may lead to increased male reproductive success, whereas the lower flowers have higher female reproductive success.展开更多
基金supported in part by the National Natural Science Foundation of China(Nos.61773202,52072174)the Foundation of National Defense Science and Technology Key Laboratory of Avionics System Integrated Technology of China Institute of Aeronautical Radio Electronics(No.6142505180407)+1 种基金the Open Fund for Civil Aviation General Aviation Operation Key Laboratory of China Civil Aviation Management Cadre Institute(No.CAMICKFJJ-2019-04)the National key R&D plan(No.2021YFB1600500)。
文摘A dynamic programming-sequential quadratic programming(DP-SQP)combined algorithm is proposed to address the problem that the traditional continuous control method has high computational complexity and is easy to fall into local optimal solution.To solve the globally optimal control law sequence,we use the dynamic programming algorithm to discretize the separation control decision-making process into a series of sub-stages based on the time characteristics of the separation allocation model,and recursion from the end stage to the initial stage.The sequential quadratic programming algorithm is then used to solve the optimal return function and the optimal control law for each sub-stage.Comparative simulations of the combined algorithm and the traditional algorithm are designed to validate the superiority of the combined algorithm.Aircraft-following and cross-conflict simulation examples are created to demonstrate the combined algorithm’s adaptability to various conflict scenarios.The simulation results demonstrate the separation deploy strategy’s effectiveness,efficiency,and adaptability.
基金Supported by the National Natural Science Foundation of China (30430160).
文摘In hermaphroditic plants, female reproductive success often varies among different positions within an inflorescence. However, few studies have evaluated the relative importance of underlying causes such as pollen limitation, resource limitation or architectural effect, and few have compared male allocation. During a 2-year investigation, we found that female reproductive success of an acropetally flowering species, Corydalis remota Fisch. ex Maxim. var. lineariloba Maxim. was significantly lower in the upper late developing flowers when compared with the lower early flowers. Supplementation with outcross pollen did not improve female reproductive success of the upper flowers, while removal of the lower developing fruits significantly increased female reproductive success of the upper flowers in both years, evidencing resource limitation of the upper flowers. Female production in upper flowers was greatly improved by simultaneous pollen supplementation of the upper flowers and removal of the lower fruits, suggesting that, when resources are abundant, pollen may limit the female reproductive success of the upper flowers. The less seed mass in the upper flowers didn't increase in all treatments due to architecture. In the upper flowers, ovule production was significantly lower and the pollen : ovule ratio was significantly higher. These results suggest that male-biased sex allocation in the upper flowers may lead to increased male reproductive success, whereas the lower flowers have higher female reproductive success.