期刊文献+
共找到5篇文章
< 1 >
每页显示 20 50 100
Bispectrum Feature Extraction of Gearbox Faults Based on Nonnegative Tucker3 Decomposition with 3D Calculations 被引量:2
1
作者 WANG Haijun XU Feiyun +3 位作者 ZHAO Jun’ai JIA Minping HU Jianzhong HUANG Peng 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2013年第6期1182-1193,共12页
Nonnegative Tucker3 decomposition(NTD) has attracted lots of attentions for its good performance in 3D data array analysis. However, further research is still necessary to solve the problems of overfitting and slow ... Nonnegative Tucker3 decomposition(NTD) has attracted lots of attentions for its good performance in 3D data array analysis. However, further research is still necessary to solve the problems of overfitting and slow convergence under the anharmonic vibration circumstance occurred in the field of mechanical fault diagnosis. To decompose a large-scale tensor and extract available bispectrum feature, a method of conjugating Choi-Williams kernel function with Gauss-Newton Cartesian product based on nonnegative Tucker3 decomposition(NTD_EDF) is investigated. The complexity of the proposed method is reduced from o(nNlgn) in 3D spaces to o(RiR2nlgn) in 1D vectors due to its low rank form of the Tucker-product convolution. Meanwhile, a simultaneously updating algorithm is given to overcome the overfitting, slow convergence and low efficiency existing in the conventional one-by-one updating algorithm. Furthermore, the technique of spectral phase analysis for quadratic coupling estimation is used to explain the feature spectrum extracted from the gearbox fault data by the proposed method in detail. The simulated and experimental results show that the sparser and more inerratic feature distribution of basis images can be obtained with core tensor by the NTD EDF method compared with the one by the other methods in bispectrum feature extraction, and a legible fault expression can also be performed by power spectral density(PSD) function. Besides, the deviations of successive relative error(DSRE) of NTD_EDF achieves 81.66 dB against 15.17 dB by beta-divergences based on NTD(NTD_Beta) and the time-cost of NTD EDF is only 129.3 s, which is far less than 1 747.9 s by hierarchical alternative least square based on NTD (NTD_HALS). The NTD_EDF method proposed not only avoids the data overfitting and improves the computation efficiency but also can be used to extract more inerratic and sparser bispectrum features of the gearbox fault. 展开更多
关键词 nonnegative tucker3 decomposition Tucker-product convolution power spectrum density updating algorithm
下载PDF
A CLASS OF FACTORIZATION UPDATE ALGORITHM FOR SOLVING SYSTEMS OF SPARSE NONLINEAR EQUATIONS 被引量:2
2
作者 白中治 王德人 《Acta Mathematicae Applicatae Sinica》 SCIE CSCD 1996年第2期188-200,共13页
In this paper, we establish a class of sparse update algorithm based on matrix triangular factorizations for solving a system of sparse equations. The local Q-superlinear convergence of the algorithm is proved without... In this paper, we establish a class of sparse update algorithm based on matrix triangular factorizations for solving a system of sparse equations. The local Q-superlinear convergence of the algorithm is proved without introducing an m-step refactorization. We compare the numerical results of the new algorithm with those of the known algorithms, The comparison implies that the new algorithm is satisfactory. 展开更多
关键词 Quasi-Newton methods matrix factorization sparse update algorithm Qsuperlinear convergence
原文传递
H-infinity control for air-breathing hypersonic vehicle based on online simultaneous policy update algorithm
3
作者 Chao Guo Huai-Ning Wu +1 位作者 Biao Luo Lei Guo 《International Journal of Intelligent Computing and Cybernetics》 EI 2013年第2期126-143,共18页
Purpose–The air-breathing hypersonic vehicle(AHV)includes intricate inherent coupling between the propulsion system and the airframe dynamics,which results in an intractable nonlinear system for the controller design... Purpose–The air-breathing hypersonic vehicle(AHV)includes intricate inherent coupling between the propulsion system and the airframe dynamics,which results in an intractable nonlinear system for the controller design.The purpose of this paper is to propose an H1 control method for AHV based on the online simultaneous policy update algorithm(SPUA).Design/methodology/approach–Initially,the H1 state feedback control problem of the AHV is converted to the problem of solving the Hamilton-Jacobi-Isaacs(HJI)equation,which is notoriously difficult to solve both numerically and analytically.To overcome this difficulty,the online SPUA is introduced to solve the HJI equation without requiring the accurate knowledge of the internal system dynamics.Subsequently,the online SPUA is implemented on the basis of an actor-critic structure,in which neural network(NN)is employed for approximating the cost function and a least-square method is used to calculate the NN weight parameters.Findings–Simulation study on the AHV demonstrates the effectiveness of the proposed H1 control method.Originality/value–The paper presents an interesting method for the H1 state feedback control design problem of the AHV based on online SPUA. 展开更多
关键词 Programming and algorithm theory Controllers Design Nonlinear H1 control Air-breathing hypersonic vehicle Simultaneous policy update algorithm Hamilton-Jacobi-Isaacs equation ONLINE
原文传递
Digital twin modeling method for lithium-ion batteries based on data-mechanism fusion driving
4
作者 Chao Lyu Shaochun Xu +1 位作者 Junfu Li Michael Pecht 《Green Energy and Intelligent Transportation》 2024年第5期52-69,共18页
Lithium-ion batteries have been rapidly developed as clean energy sources in many industrial fields,such as new energy vehicles and energy storage.The core issues hindering their further promotion and application are ... Lithium-ion batteries have been rapidly developed as clean energy sources in many industrial fields,such as new energy vehicles and energy storage.The core issues hindering their further promotion and application are reliability and safety.A digital twin model that maps onto the physical entity of the battery with high simulation accuracy helps to monitor internal states and improve battery safety.This work focuses on developing a digital twin model via a mechanism-data-driven parameter updating algorithm to increase the simulation accuracy of the internal and external characteristics of the full-time domain battery under complex working conditions.An electrochemical model is first developed with the consideration of how electrode particle size impacts battery characteristics.By adding the descriptions of temperature distribution and particle-level stress,a multi-particle size electrochemical-thermal-mechanical coupling model is established.Then,considering the different electrical and thermal effect among individual cells,a model for the battery pack is constructed.A digital twin model construction method is finally developed and verified with battery operating data. 展开更多
关键词 Lithium-ion battery Multi-particle size electrochemical-thermalmechanical coupling model Online model parameter updating algorithm Digital twin
原文传递
Variable-fidelity optimization with design space reduction 被引量:2
5
作者 Mohammad Kashif Zahir Gao Zhenghong 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2013年第4期841-849,共9页
Advanced engineering systems, like aircraft, are defined by tens or even hundreds of design variables. Building an accurate surrogate model for use in such high-dimensional optimization problems is a difficult task ow... Advanced engineering systems, like aircraft, are defined by tens or even hundreds of design variables. Building an accurate surrogate model for use in such high-dimensional optimization problems is a difficult task owing to the curse of dimensionality. This paper presents a new algorithm to reduce the size of a design space to a smaller region of interest allowing a more accurate surrogate model to be generated. The framework requires a set of models of different physical or numerical fidelities. The low-fidelity (LF) model provides physics-based approximation of the high-fidelity (HF) model at a fraction of the computational cost. It is also instrumental in identifying the small region of interest in the design space that encloses the high-fidelity optimum. A surrogate model is then constructed to match the low-fidelity model to the high-fidelity model in the identified region of interest. The optimization process is managed by an update strategy to prevent convergence to false optima. The algorithm is applied on mathematical problems and a two-dimen-sional aerodynamic shape optimization problem in a variable-fidelity context. Results obtained are in excellent agreement with high-fidelity results, even with lower-fidelity flow solvers, while showing up to 39% time savings. 展开更多
关键词 Airfoil optimization Curse of dimensionality Design space reduction Genetic algorithms Kriging Surrogate models Surrogate update strategies Variable fidelity
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部