This study examines the relationship between high positive isostatic gravity anomalies (IGA), steep topography and lower crustal extrusion at the eastern margin of the Tibetan Plateau. IGA data has revealed uplift a...This study examines the relationship between high positive isostatic gravity anomalies (IGA), steep topography and lower crustal extrusion at the eastern margin of the Tibetan Plateau. IGA data has revealed uplift and extrusion of lower crustal flow in the Longmen Shan Mountains (the LMS). Firstly, The high positive IGA zone corresponds to the LMS orogenic belt. It is shown that abrupt changes in IGA correspond to zones of abrupt change of topography, crustal thickness and rock density along the LMS. Secondly, on the basis of the Airy isostasy theory, simulations and inversions of the positive IGA were conducted using three-dimensional bodies. The results indicated that the LMS lacks a mountain root, and that the top surface of the lower crust has been elevated by 11 km, leading to positive IGA, tectonic load and density load. Thirdly, according to Watts's flexural isostasy model, elastic deflection occurs, suggesting that the limited (i.e. narrow) tectonic and density load driven by lower crustal flow in the LMS have led to asymmetric flexural subsidence in the foreland basin and lifting of the forebulge. Finally, based on the correspondence between zones of extremely high positive IGA and the presence of the Precambrian Pengguan-Baoxing complexes in the LMS, the first appearance of erosion gravels from the complexes in the Dayi Conglomerate layer of the Chengdu Basin suggest that positive IGA and lower crustal flow in the LMS took place at 3.6 Ma or slightly earlier.展开更多
Depending on the analysis of the coeval sedimentary geometry and subsidence mechanism in the Longmen Shan foreland basin, three models about the coupling relationship between Longmen Shan uplift and foreland basin sub...Depending on the analysis of the coeval sedimentary geometry and subsidence mechanism in the Longmen Shan foreland basin, three models about the coupling relationship between Longmen Shan uplift and foreland basin subsidence since the Indosinian have been proposed:(1) crustal shortening and its related wide wedge-shaped foreland basin,(2) crustal isostatic rebound and its related tabular foreland basin, and(3) lower crustal flow and its related narrow wedge-shaped foreland basin. Based on the narrow wedge-shaped foreland basin developed since 4 Ma, it is believed that the narrow crustal shortening and tectonic load driven by lower crustal flow is a primary driver for the present Longmen Shan uplift and the Wenchuan(Ms 8.0) earthquake.展开更多
There is a belt of metamorphic core complexes in the western margin of the Yangtze craton . The geological setting of the belt is similar to that of the Cordilleran metamorphic core complexes . A typical one in this b...There is a belt of metamorphic core complexes in the western margin of the Yangtze craton . The geological setting of the belt is similar to that of the Cordilleran metamorphic core complexes . A typical one in this belt is the Jianglang metamorphic core complex , which has a configuration consisting of three layers : a core complex consisting of Mesoproterozoic schist sequence . a ductile middle slab consisting of Paleozoic meta- sedimentary -basalt characterized by the development of ' folding layer' and an upper cover consisting of Xikang Group which has suffered both buckling and flattening . A detachment fault developed along the contact boundary between the cover and basement causes the omission of Upper Sinian and Cambrian at the base of cover . A lot of normal ductile shear zones developed in the cover causes the thinning of it . All the features show that the early extension results in the thinning of crust , but the formation of the dome and exposure of basement rocks may be the results of superimposing of the E-W directed contraction and the following southward thrusting during Indosinian to Yanshanian orogeny . Syntectonic plutonism and pervasive thermo - metamor-phism in the cover suggest that the thermal uplift also causes the uplift of the MCC .展开更多
In Northern China, sandstone-type uranium (U) deposits are mostly developed in Mesozoic-Cenozoic basins. These U deposits are usually hosted in unvarying horizons within the basins and exhibit typical U-forming sedi...In Northern China, sandstone-type uranium (U) deposits are mostly developed in Mesozoic-Cenozoic basins. These U deposits are usually hosted in unvarying horizons within the basins and exhibit typical U-forming sedimentary associations, which is referred to as U-bearing rock series. This study describes the structural features of U-bearing rock series within the main Mesozoic-Cenozoic U-producing continental basins in Kazakhstan, Uzbekistan, and Russia in the western segment of the Central Asian Metallogenic Belt (CAMB), and Northern China in the eastern segment of the CAMB. We analyze the basic structural conditions and sedimentary environments of U-bearing rock series in Northern China and classify their structural styles in typical basins into river valley, basin margin, and intrabasin uplift margin types. The intrabasin uplift margin structural style proposed in this study can be used to indicate directions for the exploration of sandstone-type U deposits hosted in the center of a basin. At the same time, the study of structural style provides a new idea for exploring sandstone-type U deposits in Mesozoic-Cenozoic basins and it is of great significance to prospecting of sandstone-type uranium deposits.展开更多
基金funded by the National Natural Science Foundation of China(Grant Nos.41372114,41502116,41340005,41172162,40972083,40841010)a research project of the National Key Laboratory of Oil and Gas Reservoir Geology and Exploitation(Grant No.SK-0801)
文摘This study examines the relationship between high positive isostatic gravity anomalies (IGA), steep topography and lower crustal extrusion at the eastern margin of the Tibetan Plateau. IGA data has revealed uplift and extrusion of lower crustal flow in the Longmen Shan Mountains (the LMS). Firstly, The high positive IGA zone corresponds to the LMS orogenic belt. It is shown that abrupt changes in IGA correspond to zones of abrupt change of topography, crustal thickness and rock density along the LMS. Secondly, on the basis of the Airy isostasy theory, simulations and inversions of the positive IGA were conducted using three-dimensional bodies. The results indicated that the LMS lacks a mountain root, and that the top surface of the lower crust has been elevated by 11 km, leading to positive IGA, tectonic load and density load. Thirdly, according to Watts's flexural isostasy model, elastic deflection occurs, suggesting that the limited (i.e. narrow) tectonic and density load driven by lower crustal flow in the LMS have led to asymmetric flexural subsidence in the foreland basin and lifting of the forebulge. Finally, based on the correspondence between zones of extremely high positive IGA and the presence of the Precambrian Pengguan-Baoxing complexes in the LMS, the first appearance of erosion gravels from the complexes in the Dayi Conglomerate layer of the Chengdu Basin suggest that positive IGA and lower crustal flow in the LMS took place at 3.6 Ma or slightly earlier.
基金funded by China National Natural Science Foundation(No:41372114,41502116,41340005,40841010,40972083,41172162,and 41402159)geological survey from China Geological Survey(No:121201010000150004–08 and 12120115004501–01)the project of State Key Laboratory of Oil and Gas Reservoir Geology and Exploitation(No:SK–0801)
文摘Depending on the analysis of the coeval sedimentary geometry and subsidence mechanism in the Longmen Shan foreland basin, three models about the coupling relationship between Longmen Shan uplift and foreland basin subsidence since the Indosinian have been proposed:(1) crustal shortening and its related wide wedge-shaped foreland basin,(2) crustal isostatic rebound and its related tabular foreland basin, and(3) lower crustal flow and its related narrow wedge-shaped foreland basin. Based on the narrow wedge-shaped foreland basin developed since 4 Ma, it is believed that the narrow crustal shortening and tectonic load driven by lower crustal flow is a primary driver for the present Longmen Shan uplift and the Wenchuan(Ms 8.0) earthquake.
基金The study is supported by the key project of science and technology of the Ministry of Geology and Mineral Resources (NO .85-01-005-1 )
文摘There is a belt of metamorphic core complexes in the western margin of the Yangtze craton . The geological setting of the belt is similar to that of the Cordilleran metamorphic core complexes . A typical one in this belt is the Jianglang metamorphic core complex , which has a configuration consisting of three layers : a core complex consisting of Mesoproterozoic schist sequence . a ductile middle slab consisting of Paleozoic meta- sedimentary -basalt characterized by the development of ' folding layer' and an upper cover consisting of Xikang Group which has suffered both buckling and flattening . A detachment fault developed along the contact boundary between the cover and basement causes the omission of Upper Sinian and Cambrian at the base of cover . A lot of normal ductile shear zones developed in the cover causes the thinning of it . All the features show that the early extension results in the thinning of crust , but the formation of the dome and exposure of basement rocks may be the results of superimposing of the E-W directed contraction and the following southward thrusting during Indosinian to Yanshanian orogeny . Syntectonic plutonism and pervasive thermo - metamor-phism in the cover suggest that the thermal uplift also causes the uplift of the MCC .
基金supported by the undertaken units of subprojects of the Program of Survey on Sandstone-Type Uranium Deposits in Northern Chinathe Ministry of Science and Technology of China(Grant 2015CB453000)the Geological Survey project of China(Grant No.DD20160128)
文摘In Northern China, sandstone-type uranium (U) deposits are mostly developed in Mesozoic-Cenozoic basins. These U deposits are usually hosted in unvarying horizons within the basins and exhibit typical U-forming sedimentary associations, which is referred to as U-bearing rock series. This study describes the structural features of U-bearing rock series within the main Mesozoic-Cenozoic U-producing continental basins in Kazakhstan, Uzbekistan, and Russia in the western segment of the Central Asian Metallogenic Belt (CAMB), and Northern China in the eastern segment of the CAMB. We analyze the basic structural conditions and sedimentary environments of U-bearing rock series in Northern China and classify their structural styles in typical basins into river valley, basin margin, and intrabasin uplift margin types. The intrabasin uplift margin structural style proposed in this study can be used to indicate directions for the exploration of sandstone-type U deposits hosted in the center of a basin. At the same time, the study of structural style provides a new idea for exploring sandstone-type U deposits in Mesozoic-Cenozoic basins and it is of great significance to prospecting of sandstone-type uranium deposits.