期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Urban Drainage Network Scheduling Strategy Based on Dynamic Regulation: Optimization Model and Theoretical Research
1
作者 Xiaoming Fei 《Intelligent Automation & Soft Computing》 SCIE 2023年第8期1293-1309,共17页
With the acceleration of urbanization in China,the discharge of domestic sewage and industrial wastewater is increasing,and accidents of sewage spilling out and polluting the environment occur from time to time.Proble... With the acceleration of urbanization in China,the discharge of domestic sewage and industrial wastewater is increasing,and accidents of sewage spilling out and polluting the environment occur from time to time.Problems such as imperfect facilities and backward control methods are com-mon in the urban drainage network systems in China.Efficient drainage not only strengthens infrastructure such as rain and sewage diversion,pollution source monitoring,transportation,drainage and storage but also urgently needs technical means to monitor and optimize production and operation.Aiming at the optimal control of single-stage pumping stations and the coordinated control between two-stage pumping stations,this paper studies the modelling and optimal control of drainage network systems.Based on the Long Short Term Memory(LSTM)water level prediction model of the sewage pumping stations,and then based on the mechanism analysis of drainage pipe network,the factors that may cause the water level change of pumping station are obtained.Grey correlation analysis is carried out on these influencing factors,and the prediction model is established by taking the factors with a high correlation degree as input.The research results show that compared with the traditional prediction model,the LSTM model not only has higher prediction accuracy but also has better inflection point tracking ability. 展开更多
关键词 LSTM neural network urban drainage network drainage system scheduling strategy optimization
下载PDF
Effectiveness of urban distributed runoff model for discharge and water depth calculation in urban drainage pipe networks
2
作者 Yang Zhou Yi-ling Leng +3 位作者 Peng-yu Wang Shang-hong Zhang Yu-long Zhu Yu-jun Yi 《Journal of Hydrodynamics》 SCIE EI CSCD 2024年第3期582-591,共10页
Effective urban land-use re-planning and the strategic arrangement of drainage pipe networks can significantly enhance urban flood defense capacity.Aimed at reducing the potential risks of urban flooding,this paper pr... Effective urban land-use re-planning and the strategic arrangement of drainage pipe networks can significantly enhance urban flood defense capacity.Aimed at reducing the potential risks of urban flooding,this paper presents a straightforward and efficient approach to an urban distributed runoff model(UDRM).The model is developed to quantify the discharge and water depth within urban drainage pipe networks under varying rainfall intensities and land-use scenarios.The Nash efficiency coefficient of UDRM exceeds 0.9,which indicates its high computational efficiency and potential benefit in predicting urban flooding.The prediction of drainage conditions under both current and re-planned land-use types is achieved by adopting different flood recurrence intervals.The findings reveal that the re-planned land-use strategies could effectively diminish flood risk upstream of the drainage pipe network across 20-year and 50-year flood recurrence intervals.However,in the case of extreme rainfall events(a 100-year flood recurrence),the re-planned land-use approach fell short of fulfilling the requirements necessary for flood disaster mitigation.In these instances,the adoption of larger-diameter drainage pipes becomes an essential requisite to satisfy drainage needs.Accordingly,the proposed UDRM effectively combines land-use information with pipeline data to give practical suggestions for pipeline modification and land-use optimization to combat urban floods.Therefore,this methodology warrants further promotion in the field of urban re-planning. 展开更多
关键词 Stormwater runoff water depth urban distributed runoff model urban drainage pipe networks urban land-use re-planning
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部