In China,numerous cities are expanding into sloping land,yet the quantitative distribution patterns of urban built-up land density along the slope gradient remain unclear,limiting the understanding of sloping land urb...In China,numerous cities are expanding into sloping land,yet the quantitative distribution patterns of urban built-up land density along the slope gradient remain unclear,limiting the understanding of sloping land urbanization.In this paper,a simple negative exponential function was presented to verify its applicability in 19 typical sloping urban areas in China.The function fits well for all case urban areas(R^(2)≥0.951,p<0.001).The parameters of this function clearly describe two fundamental attributes:initial value a and decline rate b.Between 2000 and 2020,a tends to increase,while b tends to decrease in all urban areas,confirming the hypothesis of mutual promotion between flatland densification and sloping land expansion.Multiple regression analysis indicates that the built-up land density and the ruggedness of background land can explain 70.7%of a,while the average slope ratio of built-up land to background land,the built-up land density and the built-up land area can explain 82.1%of b.This work provides a quantitative investigative tool for distribution of urban built-up land density along slope gradient,aiding in the study of the globally increasing phenomenon of sloping land urbanization from a new perspective.展开更多
Urban river riparian spaces and their natural systems are valuable to urban dwellers;but are increasingly affected and ruined by human activities and in particular, urbanization processes. In this research, land sat a...Urban river riparian spaces and their natural systems are valuable to urban dwellers;but are increasingly affected and ruined by human activities and in particular, urbanization processes. In this research, land sat and sentinel satellite imagery apt for change detection in vegetation cover, both landsat and sentinel imagery, covering the period between 1970 and 2021 in epochs of 1973, 1984, 1993, 2003, 2015 and 2021 years were used to establish the correlation between vegetation cover and built-up area along River Riara river reserve. The images were analysed to extract the built-up areas along the river reserve, including the buildings, and the rate of human settlements, which influenced vegetation cover. Normalized Difference Built-Up Index (NDBI) and Normalized Difference Vegetation Index (NDVI) were computed using the Short-Wave Infrared (SWIR) and the Near Infra-Red (NIR) bands to show the rate of change over the years. Results indicate NDVI values were high, compared to NDBI values along river Riara in the years 1973 and 1993 implying that there was more vegetation cover then. However, in the year 2021, the NDVI indicated the highest value at 0.88, with the complementary NDBI indicating the highest NDBI value at 0.47. This represents a significant increase in built-up areas since 2015 more than in previous epochs. Either, there was a significant increase in NDBI values, from 0.24 in 1993 to 0.47 in 2021. More so, the R-squared value at 0.80 informed 80% relationship between NDBI and NDVI values indicating a negative correlation.展开更多
Rainwater harvesting (RWH) systems have been developed to compensate for shortage in the water supply worldwide. Such systems are not very common in arid areas, particularly in the Gulf Region, due to the scarcity of ...Rainwater harvesting (RWH) systems have been developed to compensate for shortage in the water supply worldwide. Such systems are not very common in arid areas, particularly in the Gulf Region, due to the scarcity of rainfall and their reduced efficiency in covering water demand and reducing water consumption rates. In spite of this, RWH systems have the potential to reduce urban flood risks, particularly in densely populated areas. This study aimed to assess the potential use of RWH systems as urban flood mitigation measures in arid areas. Their utility in the retention of stormwater runoff and the reduction of water depth and extent were evaluated. The study was conducted in a residential area in Bahrain that experienced waterlogging after heavy rainfall events. The water demand patterns of housing units were analyzed, and the daily water balance for RWH tanks was evaluated. The effect of the implementation of RWH systems on the flood volume was evaluated with a two-dimensional hydrodynamic model. Flood simulations were conducted in several rainfall scenarios with different probabilities of occurrence. The results showed significant reductions in the flood depth and flood extent, but these effects were highly dependent on the rainfall intensity of the event. RWH systems are effective flood mitigation measures, particularly in urban arid regions short of proper stormwater control infrastructure, and they enhance the resilience of the built environment to urban floods.展开更多
Designing “liveable” cities as climate change effects are felt all over the world has become a priority to city authorities as ways are sought to reduce rising temperatures in urban areas. Urban Heat Island (UHI) ef...Designing “liveable” cities as climate change effects are felt all over the world has become a priority to city authorities as ways are sought to reduce rising temperatures in urban areas. Urban Heat Island (UHI) effect occurs when there is a difference in temperature between rural and urban areas. In urban areas, impervious surfaces absorb heat during the day and release it at night, making urban areas warmer compared to rural areas which cool faster at night. This Urban Heat Island effect is particularly noticeable at night. Noticeable negative effects of Urban Heat Islands include health problems, air pollution, water shortages and higher energy requirements. The main objective of this research paper was to analyze the spatial and temporal relationship between Land Surface Temperature (LST) and Normalized Density Vegetation Index (NDVI) and Built-Up Density Index (BDI) in Upper-Hill, Nairobi Kenya. The changes in land cover would be represented by analyzing the two indices NDVI and BDI. Results showed the greatest increase in temperature within Upper-Hill of up to 3.96°C between the years 2015 and 2017. There was also an increase in impervious surfaces as indicated by NDVI and BDI within Upper-Hill and its surroundings. The linear regression results showed a negative correlation between LST and NDVI and a positive correlation with BDI, which is a better predictor of Land Surface Temperature than NDVI. Data sets were analyzed from Landsat imagery for the periods 1987, 2002, 2015 and 2017 to determine changes in land surface temperatures over a 30 year period and it’s relation to land cover changes using indices. Visual comparisons between Temperature differences between the years revealed that temperatures decreased around the urban areas. Minimum and maximum temperatures showed an increase of 1.6°C and 3.65°C respectively between 1987 and 2017. The comparisons between LST, NDVI and BDI show the results to be significantly different. The use of NDVI and BDI to study changes in land cover due to urbanization, reduces the time taken to manually classify moderate resolution satellite imagery.展开更多
The rapid expansion of urban areas due to rise in population and economic growth is increasing additional demand on natural resources thereby causing land-use changes especially in megacities. Therefore, serious probl...The rapid expansion of urban areas due to rise in population and economic growth is increasing additional demand on natural resources thereby causing land-use changes especially in megacities. Therefore, serious problems associated with rapid development such as additional infrastructure, informal settlements, environmental pollution, destruction of ecological structure and scarcity of natural resources has been studied carefully using remote sensing and GIS technologies for a rapidly grown megacity namely, Delhi. The present work evaluates the land use/land cover (LULC) changes and urban expansion in Mega city Delhi and highlights the major impact of rapid urbanization and population growth on the land cover changes which needs immediate attention. The results indicate that the city is expanding towards its peripheral region with the conversion of rural regions in to urban expansions. Built-up area of Delhi witnessed an overall increment from 540.7 km2 to 791.96 km2 or 16.86% of the total city area (1,490 km2 ) during the study period 1997 to 2008 which mainly came from agriculture land, waste land, scrub-land, sandy areas and water bodies. The increment in forest cover of 0.5 % is very small when considering the increment in built up category to 17%. Total area of waterbodies has reduced by 52.9% in a ten year period (58.26 km2 in 1997 to 27.43 km2 in 2008) with shallow waterbodies now having a dismal presence. LULC changes are studied with the urban growth parameters such as population, vehicles, gross state domestic product etc. The results lay emphasis on the concepts of urban planning to be applied such that more consideration is towards the preservation and management of natural land use classes which will increase the quality of life in an urban environment.展开更多
Urbanization is termed as physical transformation of landscapes that alter the natural regime of the environment of its surrounding resulting in further changes in macro as well as micro climate of the region [1]. Urb...Urbanization is termed as physical transformation of landscapes that alter the natural regime of the environment of its surrounding resulting in further changes in macro as well as micro climate of the region [1]. Urban areas are continually facing problems of water scarcity and urban flash floods. Recent news from IPCC report 2010, CIESIN’s Global Rural Urban Mapping Project [2] and World Water Vol. 7 2007, it is clear that urban land area has doubled and affected the hydrological cycle. The components of hydrological cycle affected are Infiltration, Runoff and Evaporation and the causing components are derived by studies as land use, land cover, water withdrawal and urban developments. Thus water availability, water recharge and water cycle are all destabilized in course or urban development. The paper is an attempt to correlate and identify the periodical changes in urban water cycle, during urbanization of Bhopal City, India, during last twenty years and above. The observations are based on GIS mapping of the study area from 1991 to 2009 using rational method of runoff and recharge calculations and statistical analysis of related built-up areas. Also change in natural course of drainages with the help of GIS imageries which have been detected during twenty years that help to observe the adaptation of natural system to urban course. Also the observations show an interesting relation which can be used for further research and sustainable development [3].展开更多
Without a clear and unified definition of the urban built-up area, many city rankings by area are inconsistent, giving rise to confusion among the general public and even scholars. This paper summarizes various defini...Without a clear and unified definition of the urban built-up area, many city rankings by area are inconsistent, giving rise to confusion among the general public and even scholars. This paper summarizes various definitions of the urban built-up area and proposes three definition methods: all urban built-up areas in a municipal administrative area, concentrated contiguous built-up areas, and urban built-up areas in central cities. From the latest Landsat 8 satellite images, the paper obtains the data of urban built-up area in some of China’s big cities and makes a comparative study between the results of the urban built-up areas by the three definition methods and three other common statistical data. It finds that neither the area data nor the ranking is consistent. Finally, it further explores what causes differences in rankings and gives some advice for improving the definition of the urban built-up area.展开更多
The change of land use plays a major role in the developmental activity of a developing country. Due to rapid growth of urbanisation and dramatic increasing population, the fertile agricultural land has been converted...The change of land use plays a major role in the developmental activity of a developing country. Due to rapid growth of urbanisation and dramatic increasing population, the fertile agricultural land has been converted to built-up area with respect to the demand for housing requirement and to the need for basic infrastructure facilities. The quantum of open space and surface water bodies has also been encroached. There has been a rapid growth of population in Puducherry city from 3.48 million in 1991 to 5.44 million in 2011. Hence the conservation of natural resources becomes one of the major challenges especially in small and medium town. This study was conducted to assess the effect of change on land use in urban agglomeration area of Puducherry city for the duration period from 1997 to 2017. There has been an increase in population in Puducherry city mainly attributed to higher scale of migration from adjoining rural areas and medium town for better education, job opportunities and quality life. Hence, it has been strongly recommended for stringent Development Control Regulations to quantify the urban sprawl and manage the impact of urbanisation of land use/land cover in Puducherry city.展开更多
China had implemented the national strategies for Major Function-oriented Zones (MFOZs) to realize the goal of national sustainable development since 2010. This study analyzed and compared spatio-temporal characteri...China had implemented the national strategies for Major Function-oriented Zones (MFOZs) to realize the goal of national sustainable development since 2010. This study analyzed and compared spatio-temporal characteristics and differences in built-up area for China's MFOZs using a China' s Land Use Database (CLUD) derived from high-resolution remotely sensed images in the periods of 2000-2010 and 2010-2013. To sum up: (1) The percentage of built-up area in each of the MFOZs was significantly different, revealing the gradient feature of national land development based on the distribution of the main functions. (2) Annual growth in built-up area in optimal development zones (ODZs) decreased signifi- cantly during 2010-2013 compared with the period 2000-2010, while annual growth in built-up area in key development zones (KDZs), agricultural production zones (APZs) and key ecological function zones (KEFZs) increased significantly. (3) In ODZs, the average annual increase in built-up area in the Yangtze River Delta region was significantly higher than in other regions; the average area increase and rate of increase of built-up area in KDZs was faster in the western region than in other regions; average annual area growth of built-up area in APZs in the northeast, central and western regions was twice as high as the previous decade on average; the annual rate of change and increase in the dynamic degree of built-up area were most notable in KEFZs in the central region. (4) The spatial pattern and charac- teristics of built-up area expansions in the period 2010-2013 reflected the gradient feature of the plan for MFOZs. But the rate of increase locally in built-up area in ODZs, APZs and KEFZs is fast, so the effective measures must be adopted in the implementation of national and regional policies. The conclusions indicated these methods and results were meaningful for future regulation strategies in optimizing national land development in China.展开更多
通过利用系统思想构建土地混合利用的内涵与测度框架,揭示城市建成区土地混合利用现象的空间分布特征。利用地理信息系统(Geographic Information System,GIS)空间分析技术对多源数据进行整合,量化测度合肥市建成区土地混合利用的情况,...通过利用系统思想构建土地混合利用的内涵与测度框架,揭示城市建成区土地混合利用现象的空间分布特征。利用地理信息系统(Geographic Information System,GIS)空间分析技术对多源数据进行整合,量化测度合肥市建成区土地混合利用的情况,通过空间自相关和聚类以及异常值探讨建成区土地混合利用的空间格局。结果表明:合肥市整体土地混合利用现象分布不均衡,空间上呈现“中高外低”的分布,分布上呈现高度混合多中心分散以及中度混合集中连片的格局;土地功能混合度较高的区域主要集中在合肥市建成区中心区域、区域的生活中心和生态环境较好的区域,土地功能混合度中高度混合的格网个数低于土地数量混合度与土地空间混合度中高度混合的格网个数;土地混合利用现象呈现一定的空间聚集效应,表现为较高度混合和高度混合的空间集聚特征,形成了由中心向外围降低的离心式结构,并且边缘有分散的点状聚集区域。展开更多
基金supported by the project of the National Natural Science Foundation of China entitled“Distribution and change characteristics of construction land on slope gradient in mountainous cities of southern China”(No.41961039).
文摘In China,numerous cities are expanding into sloping land,yet the quantitative distribution patterns of urban built-up land density along the slope gradient remain unclear,limiting the understanding of sloping land urbanization.In this paper,a simple negative exponential function was presented to verify its applicability in 19 typical sloping urban areas in China.The function fits well for all case urban areas(R^(2)≥0.951,p<0.001).The parameters of this function clearly describe two fundamental attributes:initial value a and decline rate b.Between 2000 and 2020,a tends to increase,while b tends to decrease in all urban areas,confirming the hypothesis of mutual promotion between flatland densification and sloping land expansion.Multiple regression analysis indicates that the built-up land density and the ruggedness of background land can explain 70.7%of a,while the average slope ratio of built-up land to background land,the built-up land density and the built-up land area can explain 82.1%of b.This work provides a quantitative investigative tool for distribution of urban built-up land density along slope gradient,aiding in the study of the globally increasing phenomenon of sloping land urbanization from a new perspective.
文摘Urban river riparian spaces and their natural systems are valuable to urban dwellers;but are increasingly affected and ruined by human activities and in particular, urbanization processes. In this research, land sat and sentinel satellite imagery apt for change detection in vegetation cover, both landsat and sentinel imagery, covering the period between 1970 and 2021 in epochs of 1973, 1984, 1993, 2003, 2015 and 2021 years were used to establish the correlation between vegetation cover and built-up area along River Riara river reserve. The images were analysed to extract the built-up areas along the river reserve, including the buildings, and the rate of human settlements, which influenced vegetation cover. Normalized Difference Built-Up Index (NDBI) and Normalized Difference Vegetation Index (NDVI) were computed using the Short-Wave Infrared (SWIR) and the Near Infra-Red (NIR) bands to show the rate of change over the years. Results indicate NDVI values were high, compared to NDBI values along river Riara in the years 1973 and 1993 implying that there was more vegetation cover then. However, in the year 2021, the NDVI indicated the highest value at 0.88, with the complementary NDBI indicating the highest NDBI value at 0.47. This represents a significant increase in built-up areas since 2015 more than in previous epochs. Either, there was a significant increase in NDBI values, from 0.24 in 1993 to 0.47 in 2021. More so, the R-squared value at 0.80 informed 80% relationship between NDBI and NDVI values indicating a negative correlation.
文摘Rainwater harvesting (RWH) systems have been developed to compensate for shortage in the water supply worldwide. Such systems are not very common in arid areas, particularly in the Gulf Region, due to the scarcity of rainfall and their reduced efficiency in covering water demand and reducing water consumption rates. In spite of this, RWH systems have the potential to reduce urban flood risks, particularly in densely populated areas. This study aimed to assess the potential use of RWH systems as urban flood mitigation measures in arid areas. Their utility in the retention of stormwater runoff and the reduction of water depth and extent were evaluated. The study was conducted in a residential area in Bahrain that experienced waterlogging after heavy rainfall events. The water demand patterns of housing units were analyzed, and the daily water balance for RWH tanks was evaluated. The effect of the implementation of RWH systems on the flood volume was evaluated with a two-dimensional hydrodynamic model. Flood simulations were conducted in several rainfall scenarios with different probabilities of occurrence. The results showed significant reductions in the flood depth and flood extent, but these effects were highly dependent on the rainfall intensity of the event. RWH systems are effective flood mitigation measures, particularly in urban arid regions short of proper stormwater control infrastructure, and they enhance the resilience of the built environment to urban floods.
文摘Designing “liveable” cities as climate change effects are felt all over the world has become a priority to city authorities as ways are sought to reduce rising temperatures in urban areas. Urban Heat Island (UHI) effect occurs when there is a difference in temperature between rural and urban areas. In urban areas, impervious surfaces absorb heat during the day and release it at night, making urban areas warmer compared to rural areas which cool faster at night. This Urban Heat Island effect is particularly noticeable at night. Noticeable negative effects of Urban Heat Islands include health problems, air pollution, water shortages and higher energy requirements. The main objective of this research paper was to analyze the spatial and temporal relationship between Land Surface Temperature (LST) and Normalized Density Vegetation Index (NDVI) and Built-Up Density Index (BDI) in Upper-Hill, Nairobi Kenya. The changes in land cover would be represented by analyzing the two indices NDVI and BDI. Results showed the greatest increase in temperature within Upper-Hill of up to 3.96°C between the years 2015 and 2017. There was also an increase in impervious surfaces as indicated by NDVI and BDI within Upper-Hill and its surroundings. The linear regression results showed a negative correlation between LST and NDVI and a positive correlation with BDI, which is a better predictor of Land Surface Temperature than NDVI. Data sets were analyzed from Landsat imagery for the periods 1987, 2002, 2015 and 2017 to determine changes in land surface temperatures over a 30 year period and it’s relation to land cover changes using indices. Visual comparisons between Temperature differences between the years revealed that temperatures decreased around the urban areas. Minimum and maximum temperatures showed an increase of 1.6°C and 3.65°C respectively between 1987 and 2017. The comparisons between LST, NDVI and BDI show the results to be significantly different. The use of NDVI and BDI to study changes in land cover due to urbanization, reduces the time taken to manually classify moderate resolution satellite imagery.
文摘The rapid expansion of urban areas due to rise in population and economic growth is increasing additional demand on natural resources thereby causing land-use changes especially in megacities. Therefore, serious problems associated with rapid development such as additional infrastructure, informal settlements, environmental pollution, destruction of ecological structure and scarcity of natural resources has been studied carefully using remote sensing and GIS technologies for a rapidly grown megacity namely, Delhi. The present work evaluates the land use/land cover (LULC) changes and urban expansion in Mega city Delhi and highlights the major impact of rapid urbanization and population growth on the land cover changes which needs immediate attention. The results indicate that the city is expanding towards its peripheral region with the conversion of rural regions in to urban expansions. Built-up area of Delhi witnessed an overall increment from 540.7 km2 to 791.96 km2 or 16.86% of the total city area (1,490 km2 ) during the study period 1997 to 2008 which mainly came from agriculture land, waste land, scrub-land, sandy areas and water bodies. The increment in forest cover of 0.5 % is very small when considering the increment in built up category to 17%. Total area of waterbodies has reduced by 52.9% in a ten year period (58.26 km2 in 1997 to 27.43 km2 in 2008) with shallow waterbodies now having a dismal presence. LULC changes are studied with the urban growth parameters such as population, vehicles, gross state domestic product etc. The results lay emphasis on the concepts of urban planning to be applied such that more consideration is towards the preservation and management of natural land use classes which will increase the quality of life in an urban environment.
文摘Urbanization is termed as physical transformation of landscapes that alter the natural regime of the environment of its surrounding resulting in further changes in macro as well as micro climate of the region [1]. Urban areas are continually facing problems of water scarcity and urban flash floods. Recent news from IPCC report 2010, CIESIN’s Global Rural Urban Mapping Project [2] and World Water Vol. 7 2007, it is clear that urban land area has doubled and affected the hydrological cycle. The components of hydrological cycle affected are Infiltration, Runoff and Evaporation and the causing components are derived by studies as land use, land cover, water withdrawal and urban developments. Thus water availability, water recharge and water cycle are all destabilized in course or urban development. The paper is an attempt to correlate and identify the periodical changes in urban water cycle, during urbanization of Bhopal City, India, during last twenty years and above. The observations are based on GIS mapping of the study area from 1991 to 2009 using rational method of runoff and recharge calculations and statistical analysis of related built-up areas. Also change in natural course of drainages with the help of GIS imageries which have been detected during twenty years that help to observe the adaptation of natural system to urban course. Also the observations show an interesting relation which can be used for further research and sustainable development [3].
文摘Without a clear and unified definition of the urban built-up area, many city rankings by area are inconsistent, giving rise to confusion among the general public and even scholars. This paper summarizes various definitions of the urban built-up area and proposes three definition methods: all urban built-up areas in a municipal administrative area, concentrated contiguous built-up areas, and urban built-up areas in central cities. From the latest Landsat 8 satellite images, the paper obtains the data of urban built-up area in some of China’s big cities and makes a comparative study between the results of the urban built-up areas by the three definition methods and three other common statistical data. It finds that neither the area data nor the ranking is consistent. Finally, it further explores what causes differences in rankings and gives some advice for improving the definition of the urban built-up area.
文摘The change of land use plays a major role in the developmental activity of a developing country. Due to rapid growth of urbanisation and dramatic increasing population, the fertile agricultural land has been converted to built-up area with respect to the demand for housing requirement and to the need for basic infrastructure facilities. The quantum of open space and surface water bodies has also been encroached. There has been a rapid growth of population in Puducherry city from 3.48 million in 1991 to 5.44 million in 2011. Hence the conservation of natural resources becomes one of the major challenges especially in small and medium town. This study was conducted to assess the effect of change on land use in urban agglomeration area of Puducherry city for the duration period from 1997 to 2017. There has been an increase in population in Puducherry city mainly attributed to higher scale of migration from adjoining rural areas and medium town for better education, job opportunities and quality life. Hence, it has been strongly recommended for stringent Development Control Regulations to quantify the urban sprawl and manage the impact of urbanisation of land use/land cover in Puducherry city.
基金Key Project of National Natural Science Foundation of China, No.41371409 National Key Technology R&D Program, No.2013BAC03B00
文摘China had implemented the national strategies for Major Function-oriented Zones (MFOZs) to realize the goal of national sustainable development since 2010. This study analyzed and compared spatio-temporal characteristics and differences in built-up area for China's MFOZs using a China' s Land Use Database (CLUD) derived from high-resolution remotely sensed images in the periods of 2000-2010 and 2010-2013. To sum up: (1) The percentage of built-up area in each of the MFOZs was significantly different, revealing the gradient feature of national land development based on the distribution of the main functions. (2) Annual growth in built-up area in optimal development zones (ODZs) decreased signifi- cantly during 2010-2013 compared with the period 2000-2010, while annual growth in built-up area in key development zones (KDZs), agricultural production zones (APZs) and key ecological function zones (KEFZs) increased significantly. (3) In ODZs, the average annual increase in built-up area in the Yangtze River Delta region was significantly higher than in other regions; the average area increase and rate of increase of built-up area in KDZs was faster in the western region than in other regions; average annual area growth of built-up area in APZs in the northeast, central and western regions was twice as high as the previous decade on average; the annual rate of change and increase in the dynamic degree of built-up area were most notable in KEFZs in the central region. (4) The spatial pattern and charac- teristics of built-up area expansions in the period 2010-2013 reflected the gradient feature of the plan for MFOZs. But the rate of increase locally in built-up area in ODZs, APZs and KEFZs is fast, so the effective measures must be adopted in the implementation of national and regional policies. The conclusions indicated these methods and results were meaningful for future regulation strategies in optimizing national land development in China.
文摘通过利用系统思想构建土地混合利用的内涵与测度框架,揭示城市建成区土地混合利用现象的空间分布特征。利用地理信息系统(Geographic Information System,GIS)空间分析技术对多源数据进行整合,量化测度合肥市建成区土地混合利用的情况,通过空间自相关和聚类以及异常值探讨建成区土地混合利用的空间格局。结果表明:合肥市整体土地混合利用现象分布不均衡,空间上呈现“中高外低”的分布,分布上呈现高度混合多中心分散以及中度混合集中连片的格局;土地功能混合度较高的区域主要集中在合肥市建成区中心区域、区域的生活中心和生态环境较好的区域,土地功能混合度中高度混合的格网个数低于土地数量混合度与土地空间混合度中高度混合的格网个数;土地混合利用现象呈现一定的空间聚集效应,表现为较高度混合和高度混合的空间集聚特征,形成了由中心向外围降低的离心式结构,并且边缘有分散的点状聚集区域。