This paper presents a detailed statistical exploration of crime trends in Chicago from 2001 to 2023, employing data from the Chicago Police Department’s publicly available crime database. The study aims to elucidate ...This paper presents a detailed statistical exploration of crime trends in Chicago from 2001 to 2023, employing data from the Chicago Police Department’s publicly available crime database. The study aims to elucidate the patterns, distribution, and variations in crime across different types and locations, providing a comprehensive picture of the city’s crime landscape through advanced data analytics and visualization techniques. Using exploratory data analysis (EDA), we identified significant insights into crime trends, including the prevalence of theft and battery, the impact of seasonal changes on crime rates, and spatial concentrations of criminal activities. The research leveraged a Power BI dashboard to visually represent crime data, facilitating an intuitive understanding of complex patterns and enabling dynamic interaction with the dataset. Key findings highlight notable disparities in crime occurrences by type, location, and time, offering a granular view of crime hotspots and temporal trends. Additionally, the study examines clearance rates, revealing variations in the resolution of cases across different crime categories. This analysis not only sheds light on the current state of urban safety but also serves as a critical tool for policymakers and law enforcement agencies to develop targeted interventions. The paper concludes with recommendations for enhancing public safety strategies and suggests directions for future research, emphasizing the need for continuous data-driven approaches to effectively address and mitigate urban crime. This study contributes to the broader discourse on urban safety, crime prevention, and the role of data analytics in public policy and community well-being.展开更多
The study examines the Spatial Pattern and Distribution of Crime in Suleja LGA, Niger State, Nigeria. The study used GIS and statistical methods to analyse the pattern and distribution of crime incidence in the study ...The study examines the Spatial Pattern and Distribution of Crime in Suleja LGA, Niger State, Nigeria. The study used GIS and statistical methods to analyse the pattern and distribution of crime incidence in the study area. The records of each crime incidence were geocoded. Microsoft Excel was used to collate and organise the crime entries before they were imported into the ArcGIS Pro 2.0 environment. A geodatabase was created where the spatial and aspatial data were encoded and geospatial analysis was performed. The study reveals that the crime distribution pattern is generally clustered with a Global Moran’s I index of 0.097, a Z-score of 1.87, and a P-value < 0.06. Furthermore, the study reveals that armed robbery (61), kidnapping (40), car theft (33), culpable homicide (31), rape (29), and robbery (13) cases rank the highest in crime rate. Equally, findings of the study show that Chaza, Kwamba, Madalla, Suleja central, and Gaboda are the major crime hotspot zones at 90% confidence, as analysed using the Getis-Ord Gi* (Hot spot analysis) spatial statistics tool in ArcGIS Pro 2.0. The research therefore recommends that more effort be put into fighting crime, especially in areas where there are low-security formations, as they mostly have the highest record of crimes committed. Also, the patrol units should be equipped with GPS for better surveillance and real-time tracking of criminal activities.展开更多
文摘This paper presents a detailed statistical exploration of crime trends in Chicago from 2001 to 2023, employing data from the Chicago Police Department’s publicly available crime database. The study aims to elucidate the patterns, distribution, and variations in crime across different types and locations, providing a comprehensive picture of the city’s crime landscape through advanced data analytics and visualization techniques. Using exploratory data analysis (EDA), we identified significant insights into crime trends, including the prevalence of theft and battery, the impact of seasonal changes on crime rates, and spatial concentrations of criminal activities. The research leveraged a Power BI dashboard to visually represent crime data, facilitating an intuitive understanding of complex patterns and enabling dynamic interaction with the dataset. Key findings highlight notable disparities in crime occurrences by type, location, and time, offering a granular view of crime hotspots and temporal trends. Additionally, the study examines clearance rates, revealing variations in the resolution of cases across different crime categories. This analysis not only sheds light on the current state of urban safety but also serves as a critical tool for policymakers and law enforcement agencies to develop targeted interventions. The paper concludes with recommendations for enhancing public safety strategies and suggests directions for future research, emphasizing the need for continuous data-driven approaches to effectively address and mitigate urban crime. This study contributes to the broader discourse on urban safety, crime prevention, and the role of data analytics in public policy and community well-being.
文摘The study examines the Spatial Pattern and Distribution of Crime in Suleja LGA, Niger State, Nigeria. The study used GIS and statistical methods to analyse the pattern and distribution of crime incidence in the study area. The records of each crime incidence were geocoded. Microsoft Excel was used to collate and organise the crime entries before they were imported into the ArcGIS Pro 2.0 environment. A geodatabase was created where the spatial and aspatial data were encoded and geospatial analysis was performed. The study reveals that the crime distribution pattern is generally clustered with a Global Moran’s I index of 0.097, a Z-score of 1.87, and a P-value < 0.06. Furthermore, the study reveals that armed robbery (61), kidnapping (40), car theft (33), culpable homicide (31), rape (29), and robbery (13) cases rank the highest in crime rate. Equally, findings of the study show that Chaza, Kwamba, Madalla, Suleja central, and Gaboda are the major crime hotspot zones at 90% confidence, as analysed using the Getis-Ord Gi* (Hot spot analysis) spatial statistics tool in ArcGIS Pro 2.0. The research therefore recommends that more effort be put into fighting crime, especially in areas where there are low-security formations, as they mostly have the highest record of crimes committed. Also, the patrol units should be equipped with GPS for better surveillance and real-time tracking of criminal activities.