Urban landscape water body is not only an important part of urban landscape construction,but also an important way to maintain landscape diversity and biodiversity,carrying the beautiful yearning of urban residents fo...Urban landscape water body is not only an important part of urban landscape construction,but also an important way to maintain landscape diversity and biodiversity,carrying the beautiful yearning of urban residents for natural life.A good state of urban landscape water body is crucial to the ecological environment of the city.However,due to the poor kinetic energy of urban landscape water body and the influence of various human factors,the quality of urban landscape water body often declines,and urban population is threatened by water security problems.Through the study of several water body ecological remediation technologies,relevant suggestions are put forward,in order to provide a reference for water pollution restoration and treatment in urban human settlement environment.展开更多
Malaysia's rapid economic and demographic development have placed negative pressure on its water supplies and the quality of the Juru River, which is close to the nation's capital and its major source of water...Malaysia's rapid economic and demographic development have placed negative pressure on its water supplies and the quality of the Juru River, which is close to the nation's capital and its major source of water. Healthy aquatic ecosystems are supported by physicochemical properties and biological diversity. This study evaluated the anthropogenic impacts on aquatic biodiversity, especially plankton, fish, and macrobenthos, as well as the water quality of the Juru River in the Penang area. Aquatic biodiversity and river water parameters were collected from ten sampling stations along the Juru River. Seven variables were used to assess the physicochemical environment: pH, temperature, total suspended solids (TSS), salinity, dissolved oxygen (DO), biochemical oxygen demand (BOD), and chemical oxygen demand. At each sampling station, the total number of plankton, fish, and macrobenthic taxa were counted and analyzed. The relationships between the physicochemical parameters and aquatic biodiversity were investigated with biotypological analysis, principal component analysis, hierarchical cluster analysis, and linear regression analysis. These analyses showed that the richness and diversity indices were generally influenced by salinity, temperature, TSS, BOD, and pH. The data obtained in this study supported the bioindicator concept. The findings, as they related to scientifically informed conservation, could serve as a model for Juru River management, as well as for river management throughout Malaysia and other tropical Asian countries.展开更多
Water plays a role in sustaining all the biotic elements. Unfortunately, in the recent times with persistent climate change impacts, parts of the world are facing cases of inadequate water causing stress and increased...Water plays a role in sustaining all the biotic elements. Unfortunately, in the recent times with persistent climate change impacts, parts of the world are facing cases of inadequate water causing stress and increased vulnerability among the people. This is the case with urban areas across the globe as their populations keep increasing with little to no attention paid to urban planning that allows sustainable management of resources amidst rapid development. Urban areas are surrounded by high yielding aquifers that have better water services from groundwater. However, the urban sprawl phenomena have limited attempts in assessing ground water potential in urban areas contributing to urban water scarcity. Therefore, the study aims to look at the problem of urban water scarcity, by analyzing the levels and distribution of groundwater in Voi town using remote sensing and GIS techniques, in order to suggest suitable sites for underground water exploration in regard to the overall urban water supply. From the analysis, the results showed that the area majorly has low to potential zones of groundwater. High potential areas were very few and were mostly on the western side of the area. Very low potential zones were seen on the east and north side of the area.展开更多
Water, a valuable resource to human lives, is being abused and driven to scarcity. This scarcity is leading some countries and areas to face difficulty in accessing drinking water. As the UN recently stated “by 2050 ...Water, a valuable resource to human lives, is being abused and driven to scarcity. This scarcity is leading some countries and areas to face difficulty in accessing drinking water. As the UN recently stated “by 2050 water shortages and harder access will be reached by around 2/3<sup>rd</sup> of the world total population” [1], thus, there is a high need to treat and reuse wastewater for domestic purposes, which will lead to less reliance on fresh water as an initial water source. Greywater—defined as the water produced in domestic houses including sinks and bathroom showers, and excluding any blackwater mix which is collected from toilets—is a type of wastewater. Greywater accounts for up to 75% of the daily water produced [2] while it has fewer contaminants when compared to blackwater. This makes greywater a focal point for treatment, and reusing to conserve fresh water and approach net zero water concept. Even though the definition of greywater is the same globally, its criteria can differ from one country to another, from one building to another, or even from the same person’s usage along the day. Accordingly, several treatment methods evolved over years aiming at treating the produced greywater for reuse mainly in irrigation and toilet flushing. The objective of this paper is to demonstrate a novel net zero wastewater approach applying cradle-to-cradle concept for urban communities;while also proposing a sustainable greywater treatment technique that is environmentally friendly, cost-effective and socially acceptable.展开更多
The digital twins concept enhances modeling and simulation through the integration of real-time data and feedback.This review elucidates the foundational elements of digital twins,covering their concept,entities,domai...The digital twins concept enhances modeling and simulation through the integration of real-time data and feedback.This review elucidates the foundational elements of digital twins,covering their concept,entities,domains,and key technologies.More specifically,we investigate the transformative potential of digital twins for the wastewater treatment engineering sector.Our discussion highlights the application of digital twins to wastewater treatment plants(WWTPs)and sewage networks,hardware(i.e.,facilities and pipes,sensors for water quality and activated sludge,hydrodynamics,and power consumption),and software(i.e.,knowledge-based and data-driven models,mechanistic models,hybrid twins,control methods,and the Internet of Things).Furthermore,two cases are provided,followed by an assessment of current challenges in and perspectives on the application of digital twins in WWTPs.This review serves as an essential primer for wastewater engineers navigating the digital paradigm shift.展开更多
Urban areas face significant challenges in maintaining water quality amidst increasing urbanization and changing climatic patterns. This study investigates the complex interplay between meteorological variables and wa...Urban areas face significant challenges in maintaining water quality amidst increasing urbanization and changing climatic patterns. This study investigates the complex interplay between meteorological variables and water quality parameters in Nairobi City, focusing on the impacts of rainfall and temperature on surface water quality. Data from multiple sources, including the Water Resources Authority, Nairobi Water and Sewerage Company, and the World Bank’s Climate Change Knowledge Portal, were analyzed to assess the relationships between meteorological variables (rainfall and temperature) and water quality parameters (such as electroconductivity, biochemical oxygen demand, chloride, and pH). The analysis reveals varying impacts of rainfall and temperature on different water quality parameters. While parameters like iron and pH show strong relationships with both rainfall and temperature, others such as ammonia and nitrate exhibit moderate relationships. Additionally, the study highlights the influence of runoff, urbanization, and industrial activities on water quality, emphasizing the need for holistic management approaches. Recommendations encompass the establishment of annual publications on Nairobi River water quality, online accessibility of water quality data, development of hydrological models, spatial analysis, and fostering cross-disciplinary research collaborations. Implementing these recommendations can enhance water quality management practices, mitigate risks, and safeguard environmental integrity in Nairobi City.展开更多
Dam-break flows pose significant threats to urban areas due to their potential for causing rapid and extensive flooding. Traditional numerical methods for simulating these events struggle with complex urban landscapes...Dam-break flows pose significant threats to urban areas due to their potential for causing rapid and extensive flooding. Traditional numerical methods for simulating these events struggle with complex urban landscapes. This paper presents an alternative approach using Radial Basis Functions to simulate dam-break flows and their impact on urban flood inundation. The proposed method adapts a new strategy based on Particle Swarm Optimization for variable shape parameter selection on meshfree formulation to enhance the numerical stability and convergence of the simulation. The method’s accuracy and efficiency are demonstrated through numerical experiments, including well-known partial and circular dam-break problems and an idealized city with a single building, highlighting its potential as a valuable tool for urban flood risk management.展开更多
This study investigates the multifaceted impacts of climate change on the Midwest region of the United States, particularly the rising temperatures and precipitation brought about by hot weather activities and technol...This study investigates the multifaceted impacts of climate change on the Midwest region of the United States, particularly the rising temperatures and precipitation brought about by hot weather activities and technological advances since the 19th century. From 1900 to 2010, temperatures in the Midwest rose by an average of 1.5 degrees Fahrenheit, which would also lead to an increase in greenhouse gas emissions. Precipitation is also expected to increase due to increased storm activity and changes in regional weather patterns. This paper explores the impact of these changes on urban and agricultural areas. In urban areas such as the city of Chicago, runoff from the increasing impervious surface areas poses challenges to the drainage system, and agriculture areas are challenged by soil erosion, nutrient loss, and fewer planting days due to excessive rainfall. Sustainable solutions such as no-till agriculture and the creation of grassland zones are discussed. Using historical data, recent climate studies and projections, the paper Outlines ways to enhance the Midwest’s ecology and resilience to climate change.展开更多
[Objective] The aim was to study on construction of overall water environment in Xi'an. [Method] The study discussed necessity and basic principles of over-all restoration and construction of "Chang'an Eight Water...[Objective] The aim was to study on construction of overall water environment in Xi'an. [Method] The study discussed necessity and basic principles of over-all restoration and construction of "Chang'an Eight Water" from urban planning, and explored related methods from long term planning and concrete construction approaches. [Result] The study proposed that urban landscape substrates of "Chang' an Eight Water" should be restored based on overall planning about urban water environment, change of linear metabolism, and construction of drainage circulation system. Furthermore, self-circulation and purification of rainfall and sewage could be made use of there in view of present urban water environment. In addition, urban "metabolism" should be restored progressively to improve urban environment with consideration of water catchment, storage, and diversion. [Conclusion] We should take the initiative to catch the special opportunity to build Xi'an into an international metropolis with overall planning, designing and implementation, which will be conducive to reconstruction of water system and pleasant surroundings, and to presentation of urban ecosystem and context in "Chang'an Eight Water", providing many opportunities for urban development.展开更多
The efficient use of water resources directly affects environmental, social, and economic development; therefore, it has a significant impact on urban populations. A slacks-based measure for data envelopment analysis ...The efficient use of water resources directly affects environmental, social, and economic development; therefore, it has a significant impact on urban populations. A slacks-based measure for data envelopment analysis (SBM-DEA) has been widely used in energy efficiency and environmental efficiency analyses in recent years. Based on this model, data from 316 cities were examined and a category method was employed involving three different sorting techniques to empirically evaluate the efficiency of urban water re- source utilization in China between 2000 and 2012. The overall efficiency (OE) of urban water resource utilization in China was initially low, but has improved over the past decade. The scale efficiency (SE) was higher than the pure technological efficiency (PTE); PTE is a major determining factor of OE, and has had an increasingly significant effect. The efficiency of water resource utilization varied ac- cording to the region, urban scale, and economic function. The OE score for the eastern China was higher than for the rest of the region, and the OE score for the western China was higher than for the central China. The OE score for urban water resource utilization has improved with urban expansion, except in the case of small cities. The SE showed an inverted U-shaped' trend with increasing urban expansion. The OE of urban water utilization in comprehensive functional cities was greater than in economic specialization cities, and was greater in heavy industry specialization cities than in other specialization cities. This study contributes to the field of urban water resource management by examining variations in efficiency with urban ~ezle展开更多
During the rapid industrialization and urbanization of China,urban agglomeration in river basin areas raises the problems of over-use of water resources and pollution of the water environment.Related research in China...During the rapid industrialization and urbanization of China,urban agglomeration in river basin areas raises the problems of over-use of water resources and pollution of the water environment.Related research in China has mainly focused on the conflicts among economic growth,urban expansion and water resource shortages within admin-istrative boundaries.However,water environments are much more dependent on their physical boundaries than their administrative boundaries.Consistent with the nature of water environment,this study aims at analyzing coordination relationships between urban development and water environment changes within physical river basin boundaries.We chose the Shayinghe River Basin,China,as our case study area which is facing serious challenges related to water en-vironment protection.Then we classified 35 county-level administrative units into upstream,midstream and down-stream regions based on their physical characteristics;analyzed the coordination degree of urban agglomeration using the Technique for Order Preference by Similarity to Ideal Solution (TOPSIS) method;and constructed cooperative models using the Linear Programming (LP function) to simulate four scenarios of the coordination relationship be-tween urban population increase and water environment protection based on existing water resources and water pollu-tion data.The results show that the present coordinative situation in Shayinghe River Basin is not sustainable.In gen-eral,more than 50% administrative units are in the bad coordinative situation.In particular,the downstream region is under worse condition than the upstream and midstream regions.Cooperative models in scenario analyses indicate that the population scale set in existing urban master plannings is not coordinated with the water environment protection.To reach the goal of regional sustainable development,the total population needs to be controlled such that it will re-main at 4.5×10 7 or below by 2020 given the capacity of water environment.展开更多
The utilization of reclaimed water could be an efficient tool to alleviate water scarcity,especially for dry river augmentation.However,it is crucial to monitor water quality to ensure safety to human health and to av...The utilization of reclaimed water could be an efficient tool to alleviate water scarcity,especially for dry river augmentation.However,it is crucial to monitor water quality to ensure safety to human health and to avoid negative effects on the environment.Reclaimed water samples were collected bimonthly from May to November in 2010 in Chaobai River,and the physiochemical parameters were determined.The main results are as follows:The parameters exceeding the threshold value of the water guidelines are mainly nutrition related to nitrogen and phosphorus,which are known to increase the risk of eutrophication in surface waters.Additionally,nitrite and nitrate can be detrimental to human health.The majority of the parameters have a peaking concentration in May,whereas others either show significant temporal variation over the entire period or remain relatively constant in all four months.Correlation analysis shows that some parameters(pH,T and B) have no significant correlation with others,whereas significant positive correlation was found for Sr with EC and TDS,for CI with TDS,for Si02 with TP and for NO3-N with TN and a significant negative correlation between SO4 and Ba.According to principal component analysis,60.108%of the total data is represented by dominant solutes,and the second principal component with a percentage of 31.876 comprises parameters related to nitrogen.Subsequent cluster analysis of parameters identified four groups,which represent different compositions,and samples in May differ from others.展开更多
In the purpose of defining typical urban water management challenges in coastal lowlands in the context of global climate change, a comparative study was conducted between two coastal new towns respectively located in...In the purpose of defining typical urban water management challenges in coastal lowlands in the context of global climate change, a comparative study was conducted between two coastal new towns respectively located in the Netherlands and Northern China. Comparative method is applied to define main functioning patterns of urban water systems in the two cases, then computer simulations were used to furthercompare drainage capacity in order to reveal the trends of urban water management. Major resulthas shown that Almere in the Netherlands generally more advanced in urban water management asmultiple functioning patterns are available.Strong dykes maintain competence for land subsidence and sea level rise. Open water system decreases local runoff and increaseswater retention level. Systematic control ofsluicesand locks which serve for shipping and waterfront landscaping are simultaneously isolating contaminants from outer water body. Tianjin Eco-city in China has shown both strengths and weaknesses. It takes large amount of reclaimed water as main landscaping water source, which adapts to local water pollution and shortage while requires highly centralized facilities. Large water body is reserved and huge scale underground drainage system built, but it is still vulnerable to heavy storms due to the lack of efficient surface water drainage system. Coastal line control does not adequately prevent from increasing storm surge risks in the future. SWMMsimulations have supported the viewpoint ofdistributed surface water with a higher efficiency for storm drainage. Meanwhile, surface water system returns more added values to urban development. The study is corresponding well with the theory of water sensitive city. As a conclusion, urban water system should always incorporate methods to achieve higher system resilience based on multiple functioning patterns.展开更多
From the point of view of urban consumption behavior, urban fresh water consumption could be classified as three types, namely, direct, indirect and induced water consumption. A calculation approach of urban flesh wat...From the point of view of urban consumption behavior, urban fresh water consumption could be classified as three types, namely, direct, indirect and induced water consumption. A calculation approach of urban flesh water consumption was presented based on the theory of urban basic material consumption and the input-output method, which was utilized to calculate urban fresh water consumption of China, and to analyze its structural change and causes. The results show that the total urban flesh water consumption increased 561.7× 10^9m^3, and the proportion to the total national flesh water resources increased by 20 percentage points from 1952 to 2005. The proportion of direct and induced water consumption had been continuously rising, and it increased by 15 and 35 percentage points separately from 1952 to 2005, while the proportion of indirect water consumption decreased by 50 percentage points. Urban indi- rect water consumption was mainly related to urban grain, beef and mutton consumption, and urban induced water consumption had a close relationship with the amount of carbon emission per capita. Finally, some countermeasures were put forward to realize sustainable utilization of urban fresh water resources in China.展开更多
Water has become a key restricting factor of the urbanization process in developing arid areas.Based on qualitative and quantitative methods,we constructed an integrated in-dicator system to assess the status of water...Water has become a key restricting factor of the urbanization process in developing arid areas.Based on qualitative and quantitative methods,we constructed an integrated in-dicator system to assess the status of water resources and urbanization system in arid area,and established an AHP model reformed by entropy technology to evaluate the temporal and spatial variations of water resources constraint intensity on urbanization.This model is ap-plied to the Hexi Corridor,a typical arid area in NW China.Results show that,water resources constraint intensity on urbanization in the Hexi Corridor is bigger in the east and smaller in the west.It has changed from the less strong constraint type into the strong constraint type from 1985 to 2005,yet it decreased appreciably in recent years.At present,most areas in the Hexi Corridor belong to the less strong or strong constraint type.Through rational adjustment of water resources and urbanization system,the Hexi Corridor can still promote water resources sustainable utilization and accelerate the urbanization process.This study suggests that the integrated assessment model of water resources constraint intensity on urbanization is an effective method to analyze the conflicts between water resources and urbanization system in arid area.展开更多
This manuscript is an attempt to demonstrate effectiveness of nature-based solutions (NBS) and measures to reduce risk of flooding and environmental impact in urban settings. The nature-based solutions (NBS) were asse...This manuscript is an attempt to demonstrate effectiveness of nature-based solutions (NBS) and measures to reduce risk of flooding and environmental impact in urban settings. The nature-based solutions (NBS) were assessed as scenarios from experience of urban storm drainage and sewerage systems based on practices that improve urban water management through modelling using urban stormwater management model (SWMM). The model has been applied in a typical urban environment in the second city in Botswana, the City of Francistown, which has a population of more than one hundred thousand. By considering the 2-yr and 10-year storm events in a calibrated SWMM, NBS scenarios from a mix of low impact and drainage measures were considered. The considered NBS scenarios were used to determine their effectiveness in terms of reducing and controlling peak runoff, flood volumes, infiltration and evapotranspiration in the study area, which are vital in assessing the opportunity and challenge for sustainable management of water resources and associated tradeoff of investments in the urban contexts. The study demonstrates the usefulness of implementing effective measures for achieving NBS in urban context and possibility of outscaling at basin and regional levels.展开更多
In this study conducted in the coastal zone of Cameroon, biological indices and functional feeding groups of benthic macroinvertebrates were used to assess the health status of two urban streams. For a better diagnosi...In this study conducted in the coastal zone of Cameroon, biological indices and functional feeding groups of benthic macroinvertebrates were used to assess the health status of two urban streams. For a better diagnosis, two streams located in coastal forest zone were used as a reference. Benthic macroinvertebrates were sampled monthly over a 3-month period (from May to July 2017) in six urban stations and six forest stations. Measurements of the physicochemical variables were done simultaneously. Physicochemical analysis revealed that urban streams are strongly polluted with high content of decaying organic matters, while forest streams are slightly polluted as indicated by the Principal Component Analysis. Concerning benthic macroinvertebrates, urban streams are poorly diversified with the proliferation of taxa tolerant to water pollution and belonging to the functional feeding groups of collectors-gatherers. Inversely, forest streams are more diversified and dominated by sensitive taxa, most belonging to the functional feeding groups of predators and shredders. These marked differences between biological indices and feeding mode of benthic macroinvertebrates in forest and urban rivers confirm the reliability of benthic macroinvertebrates as good indicators of freshwater ecosystem in the coastal zone of Cameroon.展开更多
Urban water consumption has some characteristics of grey because it is influenced by economy, population, standard of living and so on. The multi-variable grey model (MGM(1,n)), as the expansion and complement of GM(1...Urban water consumption has some characteristics of grey because it is influenced by economy, population, standard of living and so on. The multi-variable grey model (MGM(1,n)), as the expansion and complement of GM(1,1) model, reveals the relationship between restriction and stimulation among variables, and the genetic algorithm has the whole optimal and parallel characteristics. In this paper, the parameter q of MGM(1,n) model was optimized, and a multi-variable grey model (MGM(1,n,q)) was built by using the genetic algorithm. The model was validated by examining the urban water consumption from 1990 to 2003 in Dalian City. The result indicated that the multi-variable grey model (MGM(1,n,q)) based on genetic algorithm was better than MGM(1,n) model, and the MGM(1,n) model was better than MGM(1,1) model.展开更多
Economic growth promoted by large investment projects in the city of Seropédica and surrounding areas is not accompanied by a territorial planning that supports future growth scenarios. The challenge of the munic...Economic growth promoted by large investment projects in the city of Seropédica and surrounding areas is not accompanied by a territorial planning that supports future growth scenarios. The challenge of the municipality is to prepare to have its territory fully transformed. This study aimed to establish quantitative data on the interferences that the growth model practiced has caused in its main watercourse called Val?o dos Bois. For this, its morphometric characteristics and physicochemical parameters of water quality were measured, and computational simulations of the self-purification processes were performed at various points, as well as the infiltration and precipitation processes, surface flow and leaching in four occupation scenarios of the urbanized areas of the basin, for rains with five different return periods.展开更多
文摘Urban landscape water body is not only an important part of urban landscape construction,but also an important way to maintain landscape diversity and biodiversity,carrying the beautiful yearning of urban residents for natural life.A good state of urban landscape water body is crucial to the ecological environment of the city.However,due to the poor kinetic energy of urban landscape water body and the influence of various human factors,the quality of urban landscape water body often declines,and urban population is threatened by water security problems.Through the study of several water body ecological remediation technologies,relevant suggestions are put forward,in order to provide a reference for water pollution restoration and treatment in urban human settlement environment.
文摘Malaysia's rapid economic and demographic development have placed negative pressure on its water supplies and the quality of the Juru River, which is close to the nation's capital and its major source of water. Healthy aquatic ecosystems are supported by physicochemical properties and biological diversity. This study evaluated the anthropogenic impacts on aquatic biodiversity, especially plankton, fish, and macrobenthos, as well as the water quality of the Juru River in the Penang area. Aquatic biodiversity and river water parameters were collected from ten sampling stations along the Juru River. Seven variables were used to assess the physicochemical environment: pH, temperature, total suspended solids (TSS), salinity, dissolved oxygen (DO), biochemical oxygen demand (BOD), and chemical oxygen demand. At each sampling station, the total number of plankton, fish, and macrobenthic taxa were counted and analyzed. The relationships between the physicochemical parameters and aquatic biodiversity were investigated with biotypological analysis, principal component analysis, hierarchical cluster analysis, and linear regression analysis. These analyses showed that the richness and diversity indices were generally influenced by salinity, temperature, TSS, BOD, and pH. The data obtained in this study supported the bioindicator concept. The findings, as they related to scientifically informed conservation, could serve as a model for Juru River management, as well as for river management throughout Malaysia and other tropical Asian countries.
文摘Water plays a role in sustaining all the biotic elements. Unfortunately, in the recent times with persistent climate change impacts, parts of the world are facing cases of inadequate water causing stress and increased vulnerability among the people. This is the case with urban areas across the globe as their populations keep increasing with little to no attention paid to urban planning that allows sustainable management of resources amidst rapid development. Urban areas are surrounded by high yielding aquifers that have better water services from groundwater. However, the urban sprawl phenomena have limited attempts in assessing ground water potential in urban areas contributing to urban water scarcity. Therefore, the study aims to look at the problem of urban water scarcity, by analyzing the levels and distribution of groundwater in Voi town using remote sensing and GIS techniques, in order to suggest suitable sites for underground water exploration in regard to the overall urban water supply. From the analysis, the results showed that the area majorly has low to potential zones of groundwater. High potential areas were very few and were mostly on the western side of the area. Very low potential zones were seen on the east and north side of the area.
文摘Water, a valuable resource to human lives, is being abused and driven to scarcity. This scarcity is leading some countries and areas to face difficulty in accessing drinking water. As the UN recently stated “by 2050 water shortages and harder access will be reached by around 2/3<sup>rd</sup> of the world total population” [1], thus, there is a high need to treat and reuse wastewater for domestic purposes, which will lead to less reliance on fresh water as an initial water source. Greywater—defined as the water produced in domestic houses including sinks and bathroom showers, and excluding any blackwater mix which is collected from toilets—is a type of wastewater. Greywater accounts for up to 75% of the daily water produced [2] while it has fewer contaminants when compared to blackwater. This makes greywater a focal point for treatment, and reusing to conserve fresh water and approach net zero water concept. Even though the definition of greywater is the same globally, its criteria can differ from one country to another, from one building to another, or even from the same person’s usage along the day. Accordingly, several treatment methods evolved over years aiming at treating the produced greywater for reuse mainly in irrigation and toilet flushing. The objective of this paper is to demonstrate a novel net zero wastewater approach applying cradle-to-cradle concept for urban communities;while also proposing a sustainable greywater treatment technique that is environmentally friendly, cost-effective and socially acceptable.
基金supported by the National Natural Science Foundation of China(52321005,52293443,and 52230004)the Shenzhen Science and Technology Program(KQTD20190929172630447)+1 种基金the Shenzhen Key Research Project(GXWD20220817145054002)the Talent Recruitment Project of Guandong(2021QN020106).
文摘The digital twins concept enhances modeling and simulation through the integration of real-time data and feedback.This review elucidates the foundational elements of digital twins,covering their concept,entities,domains,and key technologies.More specifically,we investigate the transformative potential of digital twins for the wastewater treatment engineering sector.Our discussion highlights the application of digital twins to wastewater treatment plants(WWTPs)and sewage networks,hardware(i.e.,facilities and pipes,sensors for water quality and activated sludge,hydrodynamics,and power consumption),and software(i.e.,knowledge-based and data-driven models,mechanistic models,hybrid twins,control methods,and the Internet of Things).Furthermore,two cases are provided,followed by an assessment of current challenges in and perspectives on the application of digital twins in WWTPs.This review serves as an essential primer for wastewater engineers navigating the digital paradigm shift.
文摘Urban areas face significant challenges in maintaining water quality amidst increasing urbanization and changing climatic patterns. This study investigates the complex interplay between meteorological variables and water quality parameters in Nairobi City, focusing on the impacts of rainfall and temperature on surface water quality. Data from multiple sources, including the Water Resources Authority, Nairobi Water and Sewerage Company, and the World Bank’s Climate Change Knowledge Portal, were analyzed to assess the relationships between meteorological variables (rainfall and temperature) and water quality parameters (such as electroconductivity, biochemical oxygen demand, chloride, and pH). The analysis reveals varying impacts of rainfall and temperature on different water quality parameters. While parameters like iron and pH show strong relationships with both rainfall and temperature, others such as ammonia and nitrate exhibit moderate relationships. Additionally, the study highlights the influence of runoff, urbanization, and industrial activities on water quality, emphasizing the need for holistic management approaches. Recommendations encompass the establishment of annual publications on Nairobi River water quality, online accessibility of water quality data, development of hydrological models, spatial analysis, and fostering cross-disciplinary research collaborations. Implementing these recommendations can enhance water quality management practices, mitigate risks, and safeguard environmental integrity in Nairobi City.
文摘Dam-break flows pose significant threats to urban areas due to their potential for causing rapid and extensive flooding. Traditional numerical methods for simulating these events struggle with complex urban landscapes. This paper presents an alternative approach using Radial Basis Functions to simulate dam-break flows and their impact on urban flood inundation. The proposed method adapts a new strategy based on Particle Swarm Optimization for variable shape parameter selection on meshfree formulation to enhance the numerical stability and convergence of the simulation. The method’s accuracy and efficiency are demonstrated through numerical experiments, including well-known partial and circular dam-break problems and an idealized city with a single building, highlighting its potential as a valuable tool for urban flood risk management.
文摘This study investigates the multifaceted impacts of climate change on the Midwest region of the United States, particularly the rising temperatures and precipitation brought about by hot weather activities and technological advances since the 19th century. From 1900 to 2010, temperatures in the Midwest rose by an average of 1.5 degrees Fahrenheit, which would also lead to an increase in greenhouse gas emissions. Precipitation is also expected to increase due to increased storm activity and changes in regional weather patterns. This paper explores the impact of these changes on urban and agricultural areas. In urban areas such as the city of Chicago, runoff from the increasing impervious surface areas poses challenges to the drainage system, and agriculture areas are challenged by soil erosion, nutrient loss, and fewer planting days due to excessive rainfall. Sustainable solutions such as no-till agriculture and the creation of grassland zones are discussed. Using historical data, recent climate studies and projections, the paper Outlines ways to enhance the Midwest’s ecology and resilience to climate change.
文摘[Objective] The aim was to study on construction of overall water environment in Xi'an. [Method] The study discussed necessity and basic principles of over-all restoration and construction of "Chang'an Eight Water" from urban planning, and explored related methods from long term planning and concrete construction approaches. [Result] The study proposed that urban landscape substrates of "Chang' an Eight Water" should be restored based on overall planning about urban water environment, change of linear metabolism, and construction of drainage circulation system. Furthermore, self-circulation and purification of rainfall and sewage could be made use of there in view of present urban water environment. In addition, urban "metabolism" should be restored progressively to improve urban environment with consideration of water catchment, storage, and diversion. [Conclusion] We should take the initiative to catch the special opportunity to build Xi'an into an international metropolis with overall planning, designing and implementation, which will be conducive to reconstruction of water system and pleasant surroundings, and to presentation of urban ecosystem and context in "Chang'an Eight Water", providing many opportunities for urban development.
基金Key Research Program of Chinese Academy of Sciences(No.KZZD-EW-06-03-03)
文摘The efficient use of water resources directly affects environmental, social, and economic development; therefore, it has a significant impact on urban populations. A slacks-based measure for data envelopment analysis (SBM-DEA) has been widely used in energy efficiency and environmental efficiency analyses in recent years. Based on this model, data from 316 cities were examined and a category method was employed involving three different sorting techniques to empirically evaluate the efficiency of urban water re- source utilization in China between 2000 and 2012. The overall efficiency (OE) of urban water resource utilization in China was initially low, but has improved over the past decade. The scale efficiency (SE) was higher than the pure technological efficiency (PTE); PTE is a major determining factor of OE, and has had an increasingly significant effect. The efficiency of water resource utilization varied ac- cording to the region, urban scale, and economic function. The OE score for the eastern China was higher than for the rest of the region, and the OE score for the western China was higher than for the central China. The OE score for urban water resource utilization has improved with urban expansion, except in the case of small cities. The SE showed an inverted U-shaped' trend with increasing urban expansion. The OE of urban water utilization in comprehensive functional cities was greater than in economic specialization cities, and was greater in heavy industry specialization cities than in other specialization cities. This study contributes to the field of urban water resource management by examining variations in efficiency with urban ~ezle
基金Under the auspices of National Science and Technology Major Project (No.2009ZX07210)National Natural Science Foundation of China (No.40871261)
文摘During the rapid industrialization and urbanization of China,urban agglomeration in river basin areas raises the problems of over-use of water resources and pollution of the water environment.Related research in China has mainly focused on the conflicts among economic growth,urban expansion and water resource shortages within admin-istrative boundaries.However,water environments are much more dependent on their physical boundaries than their administrative boundaries.Consistent with the nature of water environment,this study aims at analyzing coordination relationships between urban development and water environment changes within physical river basin boundaries.We chose the Shayinghe River Basin,China,as our case study area which is facing serious challenges related to water en-vironment protection.Then we classified 35 county-level administrative units into upstream,midstream and down-stream regions based on their physical characteristics;analyzed the coordination degree of urban agglomeration using the Technique for Order Preference by Similarity to Ideal Solution (TOPSIS) method;and constructed cooperative models using the Linear Programming (LP function) to simulate four scenarios of the coordination relationship be-tween urban population increase and water environment protection based on existing water resources and water pollu-tion data.The results show that the present coordinative situation in Shayinghe River Basin is not sustainable.In gen-eral,more than 50% administrative units are in the bad coordinative situation.In particular,the downstream region is under worse condition than the upstream and midstream regions.Cooperative models in scenario analyses indicate that the population scale set in existing urban master plannings is not coordinated with the water environment protection.To reach the goal of regional sustainable development,the total population needs to be controlled such that it will re-main at 4.5×10 7 or below by 2020 given the capacity of water environment.
基金supported by the State Basic Research Development Program(973 Program)of China[no.2010CB428805]the Beijing Important Scientific and Technological Program[DO7050601510703]
文摘The utilization of reclaimed water could be an efficient tool to alleviate water scarcity,especially for dry river augmentation.However,it is crucial to monitor water quality to ensure safety to human health and to avoid negative effects on the environment.Reclaimed water samples were collected bimonthly from May to November in 2010 in Chaobai River,and the physiochemical parameters were determined.The main results are as follows:The parameters exceeding the threshold value of the water guidelines are mainly nutrition related to nitrogen and phosphorus,which are known to increase the risk of eutrophication in surface waters.Additionally,nitrite and nitrate can be detrimental to human health.The majority of the parameters have a peaking concentration in May,whereas others either show significant temporal variation over the entire period or remain relatively constant in all four months.Correlation analysis shows that some parameters(pH,T and B) have no significant correlation with others,whereas significant positive correlation was found for Sr with EC and TDS,for CI with TDS,for Si02 with TP and for NO3-N with TN and a significant negative correlation between SO4 and Ba.According to principal component analysis,60.108%of the total data is represented by dominant solutes,and the second principal component with a percentage of 31.876 comprises parameters related to nitrogen.Subsequent cluster analysis of parameters identified four groups,which represent different compositions,and samples in May differ from others.
文摘In the purpose of defining typical urban water management challenges in coastal lowlands in the context of global climate change, a comparative study was conducted between two coastal new towns respectively located in the Netherlands and Northern China. Comparative method is applied to define main functioning patterns of urban water systems in the two cases, then computer simulations were used to furthercompare drainage capacity in order to reveal the trends of urban water management. Major resulthas shown that Almere in the Netherlands generally more advanced in urban water management asmultiple functioning patterns are available.Strong dykes maintain competence for land subsidence and sea level rise. Open water system decreases local runoff and increaseswater retention level. Systematic control ofsluicesand locks which serve for shipping and waterfront landscaping are simultaneously isolating contaminants from outer water body. Tianjin Eco-city in China has shown both strengths and weaknesses. It takes large amount of reclaimed water as main landscaping water source, which adapts to local water pollution and shortage while requires highly centralized facilities. Large water body is reserved and huge scale underground drainage system built, but it is still vulnerable to heavy storms due to the lack of efficient surface water drainage system. Coastal line control does not adequately prevent from increasing storm surge risks in the future. SWMMsimulations have supported the viewpoint ofdistributed surface water with a higher efficiency for storm drainage. Meanwhile, surface water system returns more added values to urban development. The study is corresponding well with the theory of water sensitive city. As a conclusion, urban water system should always incorporate methods to achieve higher system resilience based on multiple functioning patterns.
基金Under the auspices of Key Project of National Natural Science Foundation of China (No. 40535026)
文摘From the point of view of urban consumption behavior, urban fresh water consumption could be classified as three types, namely, direct, indirect and induced water consumption. A calculation approach of urban flesh water consumption was presented based on the theory of urban basic material consumption and the input-output method, which was utilized to calculate urban fresh water consumption of China, and to analyze its structural change and causes. The results show that the total urban flesh water consumption increased 561.7× 10^9m^3, and the proportion to the total national flesh water resources increased by 20 percentage points from 1952 to 2005. The proportion of direct and induced water consumption had been continuously rising, and it increased by 15 and 35 percentage points separately from 1952 to 2005, while the proportion of indirect water consumption decreased by 50 percentage points. Urban indi- rect water consumption was mainly related to urban grain, beef and mutton consumption, and urban induced water consumption had a close relationship with the amount of carbon emission per capita. Finally, some countermeasures were put forward to realize sustainable utilization of urban fresh water resources in China.
基金Knowledge Innovation Project of the Chinese Academy of Sciences,No.KZCX2-YW-307-02China Post-doctoral Science FoundationK.C.Wong Education Foundation,Hong Kong
文摘Water has become a key restricting factor of the urbanization process in developing arid areas.Based on qualitative and quantitative methods,we constructed an integrated in-dicator system to assess the status of water resources and urbanization system in arid area,and established an AHP model reformed by entropy technology to evaluate the temporal and spatial variations of water resources constraint intensity on urbanization.This model is ap-plied to the Hexi Corridor,a typical arid area in NW China.Results show that,water resources constraint intensity on urbanization in the Hexi Corridor is bigger in the east and smaller in the west.It has changed from the less strong constraint type into the strong constraint type from 1985 to 2005,yet it decreased appreciably in recent years.At present,most areas in the Hexi Corridor belong to the less strong or strong constraint type.Through rational adjustment of water resources and urbanization system,the Hexi Corridor can still promote water resources sustainable utilization and accelerate the urbanization process.This study suggests that the integrated assessment model of water resources constraint intensity on urbanization is an effective method to analyze the conflicts between water resources and urbanization system in arid area.
文摘This manuscript is an attempt to demonstrate effectiveness of nature-based solutions (NBS) and measures to reduce risk of flooding and environmental impact in urban settings. The nature-based solutions (NBS) were assessed as scenarios from experience of urban storm drainage and sewerage systems based on practices that improve urban water management through modelling using urban stormwater management model (SWMM). The model has been applied in a typical urban environment in the second city in Botswana, the City of Francistown, which has a population of more than one hundred thousand. By considering the 2-yr and 10-year storm events in a calibrated SWMM, NBS scenarios from a mix of low impact and drainage measures were considered. The considered NBS scenarios were used to determine their effectiveness in terms of reducing and controlling peak runoff, flood volumes, infiltration and evapotranspiration in the study area, which are vital in assessing the opportunity and challenge for sustainable management of water resources and associated tradeoff of investments in the urban contexts. The study demonstrates the usefulness of implementing effective measures for achieving NBS in urban context and possibility of outscaling at basin and regional levels.
文摘In this study conducted in the coastal zone of Cameroon, biological indices and functional feeding groups of benthic macroinvertebrates were used to assess the health status of two urban streams. For a better diagnosis, two streams located in coastal forest zone were used as a reference. Benthic macroinvertebrates were sampled monthly over a 3-month period (from May to July 2017) in six urban stations and six forest stations. Measurements of the physicochemical variables were done simultaneously. Physicochemical analysis revealed that urban streams are strongly polluted with high content of decaying organic matters, while forest streams are slightly polluted as indicated by the Principal Component Analysis. Concerning benthic macroinvertebrates, urban streams are poorly diversified with the proliferation of taxa tolerant to water pollution and belonging to the functional feeding groups of collectors-gatherers. Inversely, forest streams are more diversified and dominated by sensitive taxa, most belonging to the functional feeding groups of predators and shredders. These marked differences between biological indices and feeding mode of benthic macroinvertebrates in forest and urban rivers confirm the reliability of benthic macroinvertebrates as good indicators of freshwater ecosystem in the coastal zone of Cameroon.
文摘Urban water consumption has some characteristics of grey because it is influenced by economy, population, standard of living and so on. The multi-variable grey model (MGM(1,n)), as the expansion and complement of GM(1,1) model, reveals the relationship between restriction and stimulation among variables, and the genetic algorithm has the whole optimal and parallel characteristics. In this paper, the parameter q of MGM(1,n) model was optimized, and a multi-variable grey model (MGM(1,n,q)) was built by using the genetic algorithm. The model was validated by examining the urban water consumption from 1990 to 2003 in Dalian City. The result indicated that the multi-variable grey model (MGM(1,n,q)) based on genetic algorithm was better than MGM(1,n) model, and the MGM(1,n) model was better than MGM(1,1) model.
文摘Economic growth promoted by large investment projects in the city of Seropédica and surrounding areas is not accompanied by a territorial planning that supports future growth scenarios. The challenge of the municipality is to prepare to have its territory fully transformed. This study aimed to establish quantitative data on the interferences that the growth model practiced has caused in its main watercourse called Val?o dos Bois. For this, its morphometric characteristics and physicochemical parameters of water quality were measured, and computational simulations of the self-purification processes were performed at various points, as well as the infiltration and precipitation processes, surface flow and leaching in four occupation scenarios of the urbanized areas of the basin, for rains with five different return periods.